
ALICE TPC Online Tracking on GPU
D. Rohr, K. Aamodt, T. Alt, H. Appelshäuser, A. Arend, B. Becker, S. Böttger, T. Breitner,

H. Büsching, S. Chattopadhyay, J. Cleymans, I. Das,Ø. Djuvsland, H. Erdal, R. Fearick,
Ø. S. Haaland, P. T. Hille, S. Kalcher,K. Kanaki, U. Kebschull, I. Kisel, M. Kretz, C. Lara, S. Lindal,

V. Lindenstruth, A. A. Masoodi, G. Øvrebekk, R. Panse, J. Peschek, M. Ploskon,M. Richter, S. Gorbunov,
D. Röhrich, B. Skaali, T. Steinbeck, A. Szostak, J. Thäder,T. Tveter, K. Ullaland, Z. Vilakazi, R. Weis, and

P. Zelnicek for the ALICE collaboration

Abstract—For online analysis in the ALICE HLT a new, fast
TPC tracker was developed. This tracker was adapted to run
on graphics cards using the NVIDIA CUDA framework. As the
former tracker was already well able to deal with proton-proton
events, the adaptation was primarily necessary for heavy-ion
events the previous tracker was not able to handle efficiently.
The implementation of the algorithm had to be adjusted at many
points to allow for an efficient usage of the GPU. In particular,
achieving a good overall workload for many processor cores,
efficient transfer to and from the GPU, as well as optimized
utilization of the different memories the GPU offers turned out
to be critical. To cope with these problems a dynamic scheduler
was introduced, which redistributes the workload among the
processor cores. Additionally a pipeline was implemented so
that the tracking on the GPU, the initialization and the output
processed by the CPU, as well as the DMA transfer can overlap.
The GPU tracking algorithm easily outperforms the CPU version
for large events while it entirely maintains its efficiency.

I. INTRODUCTION

M. Richter, Ø. Djuvsland, H. Erdal, K. Kanaki, G. Øvrebekk,
Ø. S. Haaland, D. Röhrich, A. Szostak and K. Ullaland are with the
Department of Physics and Technology, University of Bergen, Norway e-mail:
Matthias.Richter@ift.uib.no

T. Alt, S. Gorbunov, S. Kalcher, V. Lindenstruth, T. M. Steinbeck, and
J. Thäder are with the Frankfurt Institut für Informatik IfI, Frankfurt Institut
fr Advanced Studies FIAS, Ruth-Moufang-Str. 1, 60438 Frankfurt, Germany.

S. Böttger, T. Breitner, U. Kebschull, M. Kretz, C. Lara, R. Panse,
J. Peschek, D. Rohr, R. Weis, and P. Zelnicek are with the Kirchhoff Institute
of Physics, University of Heidelberg, Germany

K. Aamodt, S. Lindal, B. Skaali, T. Tveter andare with Department of
Physics, University of Oslo, Norway

M. Ploskon is with the Institut für Kernphysik, University of Frankfurt,
Frankfurt am Main, Germany

H. Appelshäuser, A. Arend, H. Büsching are with the Institut fr Kern-
physik, Max-von-Laue-Str. 1, Goethe-Universitt Frankfurt, 60438 Frankfurt
am Main, Germany.

B. Becker, and Z. Vilakazi are with the iThemba LABS, University of
Cape Town,PO Box 722, Somerset West 7129, South Africa.

S. Chattopadhyay and I. Das are with the High Energy Physics Division,
Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkatta 700 064,
India.

J. Cleymans and R. Fearick are with the Department of Physics, University
of Cape Town, Private bag X3, Rondebosch 7700, South Africa.

M. Ploskon is with the Physics Division, Lawrence Berkeley National
Laboratory,1 Cyclotron Road, 50R4049, Berkeley, CA 94720-8153, United
States.

A. A. Masoodi is with the Department of Physics, Aligarh Muslim
University, Aligarh 202001, U.P., India.

P. T. Hille is with the Department of Physics, Yale University, New Haven,
CT 06520, United States.

I. Kisel is with the GSI Helmholtzzentrum fr Schwerionenforschung
GmbH, Planckstr. 1, 64291 Darmstadt, Germany.

THE ALICE High-Level Trigger [1], [2] currently pro-
cesses proton-proton collisions at 1kHz. It is scheduled

that in the end of 2010 the first heavy ion collisions will be
processed. The increased complexity of heavy ion collisions
makes the tracking computationally more expensive. The Time
Projection Chamber (TPC) detector is the main tracking detec-
tor of the ALICE experiment, and computing the TPC tracks
is one major part of event reconstruction.

In recent years the increase in processor clock speed stag-
nated but instead a trend to multi- and many-core chips came
up. It is obvious, that for raw computation power, the best
approach is a big set of small and simple cores as it has been
realized within graphics cards for many years now. While
at first they could only be used for very special problems
using algorithms that had to be developed with a particular
architecture in mind, today there are frameworks available to
run general purpose code written in high level languages on
GPUs with little changes.

The CA Tracking algorithm used in the Alice HLT for TPC
online tracking has been developed by Sergey Gorbunov [3]
with multi-core support in mind. It includes combinatorics
based on the Cellular Automaton principle to determine track
candidates in combination with a Kalman filter [6] step for the
track fit. All steps can easily be spread on many independent
processors. Proton-Proton collisions resulting in up to several
hundreds of clusters can already be handled by the HLT
compute farm. Primarily targeted at processing upcoming Pb-
Pb events with, in the worst case more than 10.000 tracks and
several million clusters (see Fig. 1 and Fig. 2), the tracker was
adjusted to run on GPUs. A framework being able to run the
same source code on CPU as well as GPU was developed,
where the same source files are included in wrappers for both
processor types. This assures that code maintainability does
not suffer.

II. TRACKING ON GPU

During the tracking there are 5 steps with non negligible
requirement of computation time: Initialization, Neighbours
Finding, Tracklet Construction, Tracklet Selection and Track-
let Output. Out of these the Tracklet Construction contains
all the mathematics and most non trivial calculations while
consuming 50% of the time. It is therefore both, the part best
suited for running on a GPU and the part with most sense in
optimizing it. Currently The hardware equipped in the HLT are

Fig. 1. Clusters of (non central) Pb-Pb event

Fig. 2. Tracks found by GPU tracker in event

GT200 chips from NVIDIA. All above-mentioned steps have
been ported to CUDA with the most effort put into the Tracklet
Construction. The GPU tracker is implemented in a way, that
the main tracking algorithm is contained in common source
code for the CPU and GPU versions. Only two specialized
wrappers are used for both architectures. The common source
file is included in both wrappers and processed by the CPU
and GPU compiler. This way changes to the algorithm have
to be applied only once.

Since current GPU chips show good performance only for
single precision calculations, the whole tracker code uses
single precision only. An adaptation of the Kalman filter
assures numerical stability to the algorithm in single precision
[5], [4].

To efficiently run the Tracklet Construction on the GPU,
a basic understanding of the GPU’s architecture is needed.
The GT200 chip consists of 30 independent multiprocessors
with 8 ALUs each. Each multiprocessor can handle a vast
number of threads in parallel, depending on the algorithm
itself one should have about 256 concurrent threads running
on each multiprocessor for fully exploiting the GPU. The
threads running on a multiprocessor are organized in warps
of 32 threads each. All threads in one warp can only execute
one particular common instruction. If different threads are to
execute different instructions, for example due to branching in
the code, these operations have to be serialized.

III. OPTIMIZATIONS FOR GPU TRACKING

The GPU implementation of the Tracklet Construction has
each tracklet processed by a different thread. The problem
arising here is caused by different lengths of the tracklets. As
a matter of fact all threads within one warp have to wait for the
one thread processing the longest tracklet, even if their current
task is already finished. This resulted in the GPU Utilization
staying below 20% for the first implementation (See Fig. 3).
This was solved by introducing a custom scheduler. One thread
only extrapolates a tracklet for a constant number of rows.
Afterwards all unfinished tracklets are redistributed among
threads and even multiprocessors. Further some pre-filtering
was introduced to remove very short tracklets from the queue
before even starting the extrapolation. For the scheduler to
work efficiently the tracker is able to process multiple slices
in parallel. This ensures that there are always enough threads
available for scheduling. By applying these changes the GPU
utilization raised to almost 70% (Fig. 4). Additionally the
memory layout was changed in such a way, that threads which
are executed in parallel access consecutive memory addresses.
This is done by interleaving the data structures for different
threads. The GPU memory controller can coalesce accesses
from different threads into one single memory transaction.

Fig. 3. GPU utilization without scheduling during Tracklet Construction
1

Apart from the Tracklet Construction also the Neighbours
Finding and Tracklet Selection were ported on the GPU. The
performance of the neighbours finder could be significantly

1White borders seperate threads of one warp. Colors stand for: black: idling,
colored: different states during Tracklet Construction.

2The three rightmost threads belong to different multiprocessors and are
scheduled separately.

Fig. 4. GPU utilization with scheduling during Tracklet Construction 1
2

improved by caching intermediate data in the fast shared
memory of the NVIDIA GPU. However the current memory is
insufficient for all intermediate data. Fortunately the memory
size will be increased with the next GPU generation possibly
resulting in a further speedup.

Running the Tracklet Selection on the GPU is necessary
because even though it is slower compared to the CPU it
greatly decreases the output of the pipeline and thus the
amount of data that is transferred back to the host. Contrary
to all these tasks, the Initialization and Output steps do not
involve computation but instead have lots of random memory
access reading requiring most data only once. This is not well
suited for a GPU, especially considering the additional data
transfer required, but can benefit from big and advanced caches
of state of the art CPUs and therefore should stay on the CPU.

Keeping the GPU cores operating at full capacity is the main
objective. Since multiple slices are handled simultaneously
anyway, to allow efficient scheduling, the steps are pipelined
asynchronously using both, CPU and GPU while data is trans-
ferred via DMA. This way, after having initialized the tracker
data structures for the first slice, the CPU can immediately
process the next slice while the GPU starts tracking the first
one, as can be seen in Fig. 5.

Fig. 5. Asynchronous event processing

IV. INTEGRATION IN THE HLT FRAMEWORK

The general Tracker interface that was developed allows
for using both the CPU and GPU tracker within different
frameworks. The first and most important one to mention is
the HLT framework. Besides that it is possible to run the GPU
tracker from AliRoot which is the ALICE offline framework
for data analysis, event reconstruction, and simulation. Both
build systems needed to be altered in order to invoke the

CUDA compilation toolkit. In addition a standalone version
was developed and is maintained for debugging and profiling
reasons. The HLT uses an AFS file system to store the
libraries for all nodes on a common storage. The CUDA
framework is not installed on all nodes of the cluster, however,
the CUDA runtime library does not support late binding.
Therefore libraries referencing the CUDA runtime can only
be used on nodes with the CUDA framework installed. To
account for this all GPU related code is separated from the
rest of the framework in a separate library. This library offers
a plain C interface for the creation and destruction of GPU
tracker objects that can be used from the framework because
of the abstract interface. Another problem that arose is that
the CUDA context is thread local, while the HLT framework
may uphold multiple threads, all allowed to access the GPU
tracker object. Additionally the ROOT C-interpreter (CINT)
is unable to process CUDA files. However this is required in
order for the logging system to work because it is based on
ROOT macros. This is solved by making CINT interprete a
fake file stripped of all explicit GPU content.

V. EFFICIENCY

In the GPU Tracking algorithm the order in which tracks
are reconstructed is not deterministic. Clusters are assigned to
tracks according to several criteria. However, if none of them
apply clusters are assigned according to the first-come-first-
serve principle, therefore the GPU Tracking algorithm is not
completely deterministic. To test the GPU tracker data from
Monte-Carlo simulations is used. Figures 6 and 7 show the
efficiency as well as clone and fake track rations for CPU and
GPU tracker respectively. It can be concluded that the GPU
tracker is in no way inferior to the CPU version.

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Pt (GeV/c)
1 2 3 4 5 6

T
ra

ck
in

g
 e

ff
ic

ie
n

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Fake tracks

Clone tracks

Good tracks

Efficiency for good tracks

Fig. 6. Tracking efficiency of CPU Tracker

VI. PERFORMANCE

While porting the tracker, the memory model was slightly
changed. This resulted in more locality for optimal usage of
available GPU memory bandwidth and also had positive cache
effects on the CPU. Because of this and other optimizations,
that were applied the new tracker code performs better by
a factor of two on modern CPUs (benchmarked using 3.2

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Pt (GeV/c)
1 2 3 4 5 6

T
ra

ck
in

g
 e

ff
ic

ie
n

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Fake tracks

Clone tracks

Good tracks

Efficiency for good tracks

Fig. 7. Tracking efficiency of GPU Tracker

GHz Intel Nehalem, 8 threads and data from monte-carlo-
simulation) while the GPU version surpasses the processor
by another factor of 3.3 for central lead lead collisions (Fig.
8).

Fig. 9 shows the performance of the CPU and GPU tracker
on monte-carlo events of different size. Both trackers show a
linear dependency on input size while the GPU tracker has a
rather large offset. As a proof of concept analysis a different
GPU tracker variant was created (pp-mode GPU tracker).
However at both vacant event sizes for pp and heavy ion
collisions either the CPU or the former GPU tracker performs
better. Obviously the performance benefit of the GPU tracker
is the larger the larger the event size.

Fig. 8. GPU Tracker performance (Central pb-pb event)

VII. SUMMARY

The ALICE TPC online tracking algorithm was successfully
ported to NVIDIA CUDA. Several changes were made to the
implementation of the algorithm. Finally, the GPU tracker eas-
ily outperforms the CPU implementation for heavy ion events
while exactly maintaining its efficiency. Both versions share a
common source code greatly improving the maintainability.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5000 10000 15000 20000 25000 30000

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Tracks

CPU Time
GPU Time

GPU Time (PP Mode)

Fig. 9. CPU / GPU performance for different event sizes

REFERENCES

[1] ALICE collaboration. ALICE - Technical Proposal for A Large Ion
Collider Experiment at the CERN LHC. CERN/LHCC 1995-71, 1995.

[2] K. Aamodt et al. The ALICE Collaboration. The ALICE Experiment
at the CERN LHC. JINST 3 S08002, 2008. doi: 10.1088/1748-
0221/3/08/S08002.

[3] S. Gorbunov et al. ALICE HLT High Speed Tracking and Vertexing.
Proc.17th Real Time Conference, Lisbon 2010

[4] S. Gorbunov. On-line reconstruction algorithms for the CBM and ALICE
experiments. Dissertation Thesis, Frankfurth Institute for Advanced
Studies, in preparation

[5] S. Gorbunov, U. Kebschull, I. Kisel, V. Lindenstruth, and W.F.J. Mller.
Fast SIMDized Kalman Filter based track Fit. Computer Physics
Communications, 178:374 - 383, 2008

[6] R.E. Kalman. A new approach to linear Filtering and prediction problems.
Trans. ASME-Journal of Basic Engineering, 82 (Series D) (1960) 35-45

http://cdsweb.cern.ch/record/293391
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08002

	Introduction
	Tracking on GPU
	Optimizations for GPU tracking
	Integration in the HLT framework
	Efficiency
	Performance
	Summary
	References

