
ALICE TPC Online Tracking on GPU

D. Rohr1, S. Gorbunov1,2, and M. Kretz1

1Kirchhoff Institute for Physics, University of Heidelberg, Germany; 2FIAS, Frankfurt, Germany

ALICE Online Tracker

For the ALICE High Level Trigger a fast tracking al-
gorithm was developed by Sergey Gorbunov based on the
Cellular Automaton method and the Kalman filter [1], that
is currently installed in the HLT. For an efficient handling
of upcoming lead-lead collisions in 2010 with a tremen-
dous increase of clusters and tracks, possibilities for a bet-
ter usage of parallelism and many core hardware were an-
alyzed. The tracker itself was designed with parallel ap-
proaches in mind. A SIMD approach was realized by
Matthias Kretz [2] in his diploma thesis and further the
tracker was adopted to run on the NVIDIA CUDA frame-
work [3].

Modern Many-Core Processors

With the race for higher and higher clock frequencies
having reached an end, state of the art CPUs improve in
efficiency and multi-core capabilities. Graphics cards have
been designed using such approaches for many years now,
and just recently started to offer support for execution of
general purpose code in high level languages. The GT200b
chip used consists of 30 cores, providing 8 ALUs and 16kb
of fast shared memory per core. For reasons such as mem-
ory latencies there should be about 256 threads running on
each core, to reach a good GPU utilization.

GPU Tracker

For fully exploiting the GPU’s processing power many
changes hat to be applied to the tracker. Major challenges
hereby have been an efficient usage of the several heteroge-
nous memory types on the GPU as well as a good overall
utilization of all cores. In the later case different tracks
lengths turned out to be a problem, that was solved by intro-
ducing a scheduler that dynamically distributes the work-
load among cores and threads. Utilization raised from 19%
(Fig. 1) to 62% (Fig. 2). The implementation of simul-
taneous processing of multiple sectors allows the use of a
processing pipeline where data processing and data moving
to- and from the GPU overlap.

Figure 1: Tracklet Constructor without scheduling 1

Figure 2: Tracklet Constructor with dynamic scheduling 1

Performance

Out of the several steps involved in the tracking algo-
rithm three have a non negligible runtime. Fig. 3 shows a
performance comparison of the GPU tracker with the CPU
version running on an Intel Nehalem 3.2 GHz. It demon-
strates that performance for two of these three steps im-
proved significantly. Although there is some drawback dur-
ing initialization and output of the tracks, caused by GPU-
Host synchronization and PCIe transfer, a complete track-
ing run using simulated data of a central lead-lead event
was accelerated by a factor of 3.3.

 0

 5000

 10000

 15000

 20000

 25000

Init.Neighbours
Finder

Tracklet
Constructor

Tracklet
Selector

Tracklet
Output

Complete
Run

0

250

500

750

1000

1250

C
o
m
p
o
n
e
n
t
 
T
i
m
e
 
[

μs
]

C
o
m
p
l
e
t
e
 
T
i
m
e
 
[
m
s
]

CPU
GPU

Figure 3: GPU Tracker Performance

References

[1] S. Gorbunov, Matthias Kretz, David Rohr “Fast Cellular Au-
tomaton tracker for the ALICE High Level Trigger”, GSI Sci-
entific Report 2009

[2] M. Kretz, “Efficient Use of Multi- and Many-Core Systems
With Vectorization and Multithreading”

[3] NVIDIA CUDA Reference Manual,
http://developer.download.nvidia.com/compute/cuda/
2 3/toolkit/docs/CUDA Reference Manual 2.3.pdf

1Colors stand for: black: idling, color: working., y-axis: time, x-axis:
thread

GSI SCIENTIFIC REPORT 2009 INSTRUMENTS-METHODS-67

347


