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Abstract

The LOEWE-CSC cluster at the Goethe University of Frankfurt is a heterogeneous compute-
cluster employing AMD Magny-Cours CPUs and Cypress GPUs. A fast DGEMM algorithm
was developed which is able to use both the GPU and all CPU cores to the full extent. It
is shown that the transfer time to and from the GPU can be almost completely hidden by
the calculation time. Additionally, a dynamic scheduler ensures full utilization of the proces-
sors. The HPL [Hpl] benchmark was parallelized, vectorized, and adapted to utilize the fast
DGEMM. Additionally, alignment optimizations were applied and the lookahead algorithm,
which hides the communication time, was completely rewritten. The GPU kernel itself, with-
out the transfer to and from the GPU, is able to achieve 497 GFlop/s which corresponds
to to 90.93% of the GPU peak performance. To our knowledge there exists no faster kernel
implementation. The combined CPU/GPU DGEMM achieves 623 GFlop/s which is 83.63%
of the accumulated peak performance. The multi-node Linpack implementation is able to
achieve 70% of the theoretical performance. It is demonstrated that this performances scales
linearly to hundreds of nodes.
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1 Introduction to Linpack & DGEMM

1.1 Linpack

The Linpack benchmark is one of the widest used benchmark to measure the performance
of supercomputers and builds the basis for the Top500 Supercomputer List [Top1]. The
benchmark solves a dense system of linear equations. The rules include that the algorithm
used to solve the system must be of complexity O(N3) where N is the matrix size. This
ensures that the implementation of the algorithm can be adapted to perform well on various
supercomputers. By fixing the algorithm itself a fair comparison is allowed for.

In general, it can be shown that solving a system of linear equations can be reduced to matrix
multiplication. The Strassen-Algorithm [Str] can perform matrix multiplication in O(N log2 7).
This can be even improved to O(N2.375477) as shown in [Cop1+]. However, the latter one
has no application on HPC1, as the constants appearing are too big. In the following only
the naive O(N3) matrix multiplication algorithm will be used and only its implementation
improved.

1.2 High Performance Linpack (HPL)

The High Performance Linpack [Hpl] is an implementation of the Linpack benchmark provided
by the University of Tennessee and the University of Colorado. It implements the benchmark
by performing an LU factorization with row partial pivoting and solving the triangular system
afterwards. This is done using a nested recursion. Let A ∈ Mn,n+1 be a n× (n+ 1) matrix.
Each iteration in the outermost loop factors a panel of nb columns. This is done by LU-
factorizing the top-left nb × nb submatrix using an arbitrary solver. Solving this submatrix
will be referred to as ”Factorization” hereafter. After the panel has been factorized, it must
be broadcast to all nodes that take part in the computation. Then the row-swaps of the
pivoting process must be repeated on the trailing submatrix. The U -matrix must then be
solved against the triangular system and also be broadcast. This is implemented by first
creating and broadcasting2 the U -matrix and then replicating the solve process on each node.
In the last step, the C-matrix must be updated, by adding the columns of U in the way, that
zeroed out all rows in the former L-matrix. This is done by subtracting the matrix-product
L · U . Then the next iteration starts on the matrix C. Fig. 1 shows all relevant submatrices.

All steps except for the final matrix multiplication can be performed in O(N2).3 The O(N3)
matrix multiplication therefore is the time critical part of the HPL and will thus be analyzed
in more detail.

1.3 DGEMM

DGEMM is the abbreviation for ”Double-Precision Generalized Matrix Multiplication”. It
computes the generalized matrix-product C ′ = α ·op(A)op(B)+β ·C where C ′ is overwritten
onto C, α and β are scalars, A is anm×k-matrix, and B is an k×n matrix. op(A) can be A or
At. For the time being this parameter shall be ignored. A and B will be assumed transposed

1High Performance Computing.
2The broadcast is performed using a spread and roll algorithm as described in [Hpl].
3The matrix multiplication is at least O(N2) as it must calculate at least N2 distinct values. This already

shows how LU-factorization can be reduced to matrix multiplication.
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Figure 1: Submatrices in HPL

or not transposed, whichever is suited better. Section 2.5.1 will show how transposed matrices
are treated in CALDGEMM (See Section 2).

DGEMM is part of the ”Basic Linear Algebra System” (BLAS), which is a common interface
for matrix / vector operations. HPL can use different BLAS libraries. For the Linpack at the
LOEWE-CSC [Loe] the GotoBLAS2 library [Tac] was used. It uses multiple blocking levels4

and was specifically optimized to respect page boundaries and minimize TLB5 faults.

For AMD GPUs the ACML-GPU library is available.6 However, it was decided to come up
with an approach written from scratch because the ACML-GPU was unable to utilize the
GPU to the extent that was desired.

2 CALDGEMM

CALDGEMM is a library for GPU based DGEMM that was developed at the University of
Frankfurt. Currently it can run on AMD Cypress hardware. However, it should be easily
adaptable to other GPUs like the NVIDIA Fermi or the upcoming Intel Knights Corner [Int4]
accelerators. It consists of two parts: The kernel that executes the main matrix multiplication
on the GPU and the framework that handles the DMA transfer as well as data pre- and
postprocessing. In the first approach the kernel from the double_matmult example of the
AMD Stream SDK [Amd1] was adapted. The framework itself was written from scratch.

4See Section 2.4.1.
5Translation Lookaside Buffer.
6AMD Core Math Library [Amd4].

3



2.1 GPU based DGEMM

In a first step the scalars and the addition in the DGEMM shall be ignored, but only the
matrix-product C = AB be calculated. When not stated otherwise explicitly, k = 1024 is
assumed. The justification for this will come up throughout this chapter, when at some points
different k values are analyzed. The BLAS interface supports both, col-major and row-major
matrices.7 Switching from col- to row-major and vice versa corresponds to the transversion
A ·B ⇒ (At ·Bt)t = B ·A so only the order of the operands needs to be changed. Therefore,
in the following all matrices can be assumed row-major.

The AMD GPUs employed have memory sizes between 1 and 4 GBs. The nodes in the
LOEWE-CSC cluster offer 64 gigabytes of main memory. The size of the processed matrices
has the same order of magnitude. Therefore, it is not possible (or even desirable) to process
the whole DGEMM operation at once on the GPU, but a pipelined streaming approach was
implemented. The LOEWE-CSC is equipped with two 12-core Magny-Cours processors per
node. These 24 cores provide a non negligible amount of compute power, which should be
used for the DGEMM as well. For the streaming process a tiling is applied. The matrices A,
B, and C are divided into sub matrices Ai, Bj , and Ci,j whose dimensions are powers of two
or multiples of higher powers of two. The Ci,j are called tiles. The matrix-product C = AB
can thus be calculated as Ci,j = Ai ·Bj as seen in Fig. 2.
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Crest

H

Figure 2: Splitting Matrices for Streaming DGEMM

The original matrix dimensions are not necessarily powers of two, or multiples of at least
say 64. However, this does not pose a problem, as the remaining part CRest can easily be
calculated by the CPU. Thus, as a further simplification Ci,j is assumed as a square matrix
of dimension h.

The best data arrangement for the GPU to read and write the data is not necessarily the
arrangement used for the plain input and output matrices Ai, Bj , and Ci,j . E.g. it might be
good to store multiple rows in an interleaved format. Thus pre- and postprocessing of the

7Col-major matrices are primarily used by Fortran programs, while C code usually implements the row-
major version.

4



matrices is performed. These steps are called ”DivideBuffer” and ”MergeBuffer” respectively.8

The DivideBuffer function can also be used to transpose the input matrices, as required by
the BLAS specifications.

The first naive CALDGEMM implementation works the following way. The output matrix C
is divided into two parts: one processed by the CPU and the other by the GPU. This is done
in a way, such that the GPU part fulfills the above size restrictions. The CPU part will be
processed by GotoBLAS. The GPU part will be streamed through the GPU. First the input
matrices A1 and B1 are preprocessed, then transferred to the GPU. Then the GPU kernel
is executed to calculate the matrix-product, which is transferred back to the host. Finally
the postprocessing is performed. Then the iteration starts again with the next tile. Fig. 3
visualizes the process just described.

GOTO
BLAS

Core 0Core 1Core 2

Divide 1
DMA to GPU 1

DGEMM 1
DMA to Host 1

......

Merge 1
Divide 2

DMA to GPU 2
DGEMM 2

DMA to Host 2
Merge 2
Divide 3

DMA to GPU 3
DGEMM 3

DMA to Host 3
Merge 3
Divide 4

DMA to GPU 4
DGEMM 4

DMA to Host 4
Merge 4

Synchronization

Figure 3: Process-Flow of first CALDGEMM Implementation

Fig. 3 directly reveals two issues. GPU and CPU must be synchronized well so that none
of them is idling towards the end of the iteration. Thus either the required computation
time must be known in advance or they must be scheduled dynamically. In addition the pre-
and post-processing as well as the transfer to and from the GPU should overlap with GPU
calculation.

2.2 Implementation Details

Both input and output matrices can be spread over multiple buffers. This needs to be done
for certain reasons.9 Input buffers as well as output buffers can reside in both GPU and host
memory. The GPU kernel can directly read from and write data to the host memory using
DMA. CALDGEMM always locates the input memory on the GPU, as the input throughput
of the kernel dramatically exceeds the PCIe bandwidth. For the output memory both variants
are implemented. Input data is preprocessed by DivideBuffer into page locked buffers on the

8The names were chosen as they are in the AMD Stream SDK sample double_matmult, which
CALDGEMM was originally based on.

9Using multiple input buffers can reduce the register requirements (See Section 2.4.1) and alter the cache
access pattern. Multiple output buffers are required for the color buffer output (See Section 2.4.1)
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host of exactly the same size as the input buffers on the GPU. Those are then transferred
via one large DMA transfer. The output is either directly written to the host or it is written
to GPU memory and afterwards transferred to the host via one large DMA transfer. The
original C matrix is never transferred to the GPU, as it is read only once. The GPU only
calculates X = α ·AB. The MergeBuffer routine then calculates C ′ = X+β ·C. Section 2.4.1
will explain how transposed matrices are processed. This way a full DGEMM is implemented.
The parameters m, n, k, and alpha are stored in constant buffers on the GPU.

2.3 Combined GPU/CPU DGEMM

This section shall describe in more detail how the combined GPU/CPU DGEMM is imple-
mented. The matrix is split in y-direction, where the upper part is processed by the GPU.10

The part processed by the GPU is defined as u·h with u minimal such that u·h ≥ m·r where r
is the GPU-ratio. The first naive implementation calculates the ratio MaxFlopsGPU

MaxFlopsGPU+MaxFlopsCPU
.

It is desired to rather overestimate the GPU performance. Therefore u · h ≥ m · r is required
instead of taking the closest multiple of h. As Fig. 3 shows, one processing component is
idling towards the end of the DGEMM. It is desired that rather the CPU idles instead of the
GPU, as the GPU is the faster one.

Within each row the CPU calculates the rightmost n mod h columns. This ensures the correct
size of the submatrix processed by the GPU. The GPU tiles are calculated in a loop over the
vertical direction and a inner loop over the horizontal direction as can be seen in Fig. 4
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Figure 4: Running GPU/CPU DGEMM

In cases where C is not a square matrix additional logic is implemented. Splitting the matrix
in an upper and a lower part does not work well with flat matrices, especially when m ≈ h.
Therefore, flat matrices are split in a left and a right part instead of upper and lower. To keep
the notation simple the matrix is expected to be a square matrix for the rest of this chapter.
Flat matrices are handled the appropriate way with left / right instead of up / down splitting
where applicable.

10The reason to split the matrix in m direction is to have GPU and CPU both process consecutive memory
segments.
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2.3.1 Thread Pinning

The CALDGEMM implementation also requires CPU calculation, even for the GPU part of
the matrix, namely the DivideBuffer and MergeBuffer functions. For all the multithreading
in CALDGEMM a thread-server is implemented using pthreads synchronized by pthread-
mutexes. The LOEWE-CSC employs two AMD Magny-Cours CPUs per node resulting in
four independent memory controllers per node: one per CPU die.11 It turned out that the
PCIe bandwidth available depends on the memory controller responsible for the page locked
memory location that is used as source and destination on the host side (See Fig. 5). One die
is connected via HyperTransport to the chipset which connects the GPU via PCIe. This die’s
memory controller is the one to choose. For the LOEWE-CSC this is the first die (die 0).
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All GPU related memory is thus allocated on DRAM connected to die 0. To allow fast access
for the DivideBuffer and MergeBuffer functions, the thread executing those, is pinned to core 0
on die 0 as well.

As 24 cores are available using t+ 1 threads for the GPU part leaves 23− t threads available
for GotoBLAS. 12 (When multithreading CALDGEMM later all t + 1 threads used for the
GPU will be pinned to cores 0 to t.) To avoid congestion on the CPU cores the GotoBLAS
library should use only cores t + 1 to 23. As GotoBLAS implements its own thread pinning
policy a patch was implemented that allows for excluding CPU cores from the GotoBLAS
pinning routines.13 Fig. 6 shows the performance achieved by the first implementation.

2.4 DGEMM Optimizations

CALDGEMM was optimized in two steps. First the kernel performance was maximized, as
it does not depend on the framework at all. Second the framework was improved using the
fastest possible kernel.

2.4.1 Kernel Optimization

This section will describe what was done to improve the kernel. Older GPU DGEMM imple-
mentations, especially for NVIDIA GPUs, usually used Shared Memory / LDS as described

11Each Magny-Cours CPU internally consists of two dies with one memory controller each.
12t will be introduced later and can currently considered to be 0.
13The GotoBLAS library implements two routines for this: one respecting NUMA and one without NUMA.

Although only the NUMA variant is used on the cluster, both routines were patched to allow for the greatest
possible compatibility.
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in [Vol+] for example. The LDS, however, is not capable of delivering sufficient bandwidth
to get full ALU utilization on Cypress GPUs. Therefore, it is better to read the input data
through the texture cache. This is analyzed already in [Nak].14 This section will only handle
the processing of one tile Ci,j which will be called C hereafter. The tile will be subdivided
into Ci,j again, which is, however, not related to the tiling above. This also holds for A and
B. The reader should keep this in mind so that no ambiguity occurs.

To achieve maximal performance the CALDGEMM kernel was written in the AMD Interme-
diate Assembler Language (IL) [Amd2]. To minimize the amount of data required from the
memory a technique called blocking or also tiling is implemented. As tiling has already been
used in another context throughout this document it will be called blocking hereafter.

Blocking To calculate the DGEMM m · n · (2k + 2) floating point operations are needed.
Reading the input data from memory independently requires m · n · 2k memory fetches. This
amount of fetches is reduced by the blocking. The matrix C is subdivided into blocks Ci,j of
dimension a × b where a is the vertical blocking size and b the horizontal. The matrices A
and B are also subdivided into Ai,j and Bi,j of dimension a× 1 and 1× b respectively. C can
then be calculated by Ci,j =

∑k
l=1Ai,lBl,j . To do this, in each step the matrices Ai,l and Bl,j

are loaded into registers, and each element of the one is multiplied with each element of the
other and then added to the corresponding entry in Ci,j (See Fig. 7).

C (=C )
i,j

B (=B)
j

A
(=A)i

A - Matrix

B - Matrix

C - Matrix

Part of A read by thread

Part of B read by thread

Processed by One Thread

Tiling X

Tiling Y

Figure 7: Tiling / Blocking of DGEMM Kernel

This requires only k · (a+ b) memory loads to calculate a · b entries of C, so in total

m

a
· n
b
· k · (a+ b) = mnk · a+ b

ab

memory fetches. The amount of fetches is thus reduced by a factor 2ab
a+b .

The peak performance in double precision of the GPUs employed is 544 GFlop/s. Using a
4× 4 blocking the available L1 cache bandwidth provides exactly the throughput available to

14[Nak] also provides a faster kernel implementation than the AMD Stream SDK, but this was not available
when the CALDGEMM work started.
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achieve 544 GFlop/s, given that cache hit efficiency is 100%. This is of course unrealistic and
suggests a blocking slightly bigger than 4× 4.

The following blocking variants were implemented: 8× 2, 4× 4, 8× 4, 4× 8, and 8× 8.

Register Usage The blocking is used in the way, that each GPU thread calculates one
of the Ci,j submatrices of C. Therefore, the thread needs at least a · b registers for Ci,j ,
a registers for Ai,l and b registers for Bl,j plus 3 registers for i, j, and l making a total of
3 integer registers and (a + b) · (b + 1) − 1 double precision registers. As the GPU offers
128-bit registers only (a+1)·(b+1)+1

2 registers are needed. All kernels benchmarked later were
implemented such that they really hit this lower register boundary, which is e.g. 41 for the
8 × 8 kernel, the biggest one implemented. A simple trick to reduce the amount of registers
is to use multiple input data buffers. This way the same relative pointer can be used in
multiple buffers. Obviously, to hide memory latencies, the highest possible number of threads
should be running concurrently. However, for the limited number of registers, thread-count
and blocking size cannot both be maximized at the same time. This shows that a larger
blocking is not always preferable and that the trade-off point has to be found.

In the end it turned out, that for the 4× 4 kernel the register usage is not that critical. For
the unrolled kernels the compiler assigns more registers. Nonetheless, they are still faster.

Unrolling & Hardcoding Constants In the kernels, multiplying Ai,l with Bl,j is done
explicitly, with a single loop over l. This loop can be unrolled to achieve optimal performance.
Fig. 8 shows the performance of an exemplary kernel using different unroll factors. The optimal
unroll factor depends on the blocking size. (Bigger blocking sizes need less unrolling.) For
each kernel the optimal unrolling factor was experimentally determined individually.

Further the k constant can be hardcoded in the kernel instead of loading it from a constant
buffer. For the HPL k = nb = 1024 was used. To account for this a special kernel with
hardcoded k = 1024 is added. At runtime the correct kernel is called depending on the actual
k. Fig. 9 shows the performance benefit using hardcoded k instead of loading the same k from
a constant buffer. As can be seen a hardcoded k does not always improve kernel performance.
However, for the B transposed kernel variant, which was used for the HPL in the end, the
performance increased.
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Cache organization The texture cache can be configured in two ways: linear or tiled15

where the tiled mode is optimized for two-dimensional access patterns. Accessing the matrices
15See [Amd1] for a description of the tiled mode.
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for the DGEMM is a two-dimensional pattern and the tiled mode is by far the faster mode
for CALDGEMM as can be seen in Fig. 10.16

Output Memory / Shader Type The Cypress chip offers two different possibilities to
write data to the output memory:

• Color Buffers: In original pixel shaders Color Buffers were the only possible output
type. Each thread can output to at max eight buffers of float4 entries. The output
position in the buffer is determined by the position of the thread in the execution
configuration, so no address calculation is necessary. However, as a thread calculates
adjacent entries of the destination matrix but the output is written to eight distinct
buffers, the output format cannot be chosen to be the native memory format of the C
matrix. This already shows that the MergeBuffer function is mandatory when using
Color Buffers. Additionally, eight float4 color buffers allow for storing 16 double values
and are therefore unsuited for larger blockings.17

• MemExport: The newer AMD chips as the Cypress allow for the MemExport function.
This way threads can directly address and access a linear destination buffer (The Global
Buffer). However, only one Global Buffer can be used at a time, which leads to some
problems as discussed in section 2.5. All kernels implemented with large blocking use
the MemExport function in lack of alternatives. Additionally, the smaller kernels have
been implemented using the MemExport function, too.

Besides the output method different output locations can be chosen. Either the output can
be written to the global GPU memory or to page locked host memory. In the first case the
data is transferred to the host after the kernel execution in one big DMA transfer. In the
second case the output is directly written to the host memory via DMA by the kernel. So
either an extra DMA transfer is required or the kernel execution might be slowed down due
to host memory access. For each kernel variant the better implementation is experimentally
chosen.

The performance of the output types is shown in Fig. 14 in the overall kernel comparison at
the end of this section.

In addition to the common Pixel Shader the Cypress chip also supports Compute Shaders.
Compute Shaders are meant not for graphics but to allow for more complex GPGPU programs,
e.g. they only support the MemExport output. It turns out that the Compute Shader version
is inferior to the Pixel Shader version with MemExport, although it is identical except for the
Shader Type definition. The Compute Shader approach was thus not followed.

Matrix Size The matrix size affects the cache access pattern and is thus relevant for the
performance. As the original matrix for the DGEMM is tiled anyway into submatrices pro-
cessed by the kernel, the kernel matrix size can be chosen almost arbitrarily in a way that
maximizes the performance. As the dependency on m and n is alike in the following m = n is
assumed. Further, according to section 2.1 the matrix can be assumed a square matrix. Thus
in the complete section on the DGEMM kernel it is assumed that h = m = n.

16It has to be admitted that the kernel used for the comparison has been tuned for the tiled mode. I should
be possible to improve the kernel for linear mode quite a bit. However, tuning for linear access is much more
complicated, and it is not sure whether the same performance - close to peak performance - can be achieved.

17The 4× 4 and 8× 2 blocking can use Color Buffers. All other blockings are restricted to MemExport.
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Figure 10: Performance for different cache types

Fig. 11 shows the performance for multiple h and k values. The kernel used here is the best-
performing kernel that is determined at the end of this chapter. Showing all plots for all
kernels would by far exceed the scope of this document. Using the plots, for each kernel the
matrix sizes suited best were determined.
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Figure 11: DGEMM Kernel Performance for different Matrix Sizes

Fig.11 shows that performance decreases significantly, when m drops below 1024, it very
slightly increases above 1024. At k = 1024 is has a peak, that is related to the special
treatment of k = 1024 described above. Above 1024 it slightly decreases. At about k = 512
it raises again with its total peak at k = 448. However, using such low k introduces more
overhead for the synchronization etc. Therefore, even as the kernel is not the absolute fastest
one, k = 1024 remained the chosen value for the HPL. Fig. 12 and 13 show more detailed
plots for some chosen k and h.

The final values used for h are 512, 1024, 2048, 3072, and 4096 depending on the parameter
size. Section 2.5.1 gives more information about this. The value 512 is used only when
absolutely necessary, namely in the case when m < 1024 or n < 1024. (Be aware that m and
n are the total matrix dimensions here and not the tiling size).

Transposed Matrices The DGEMM specification itself allows for transposed input matri-
ces. Therefore, either the kernel or the DivideBuffer routine must be capable of transposing

11
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Figure 12: Kernel Performance at differ-
ent k
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Figure 13: Kernel Performance at differ-
ent h

input matrices. However, as already said, the treatment will be described later. At the
moment only the kernel performance shall be considered.

The GPU always reads a double2 value at a time. For an untransposed A matrix this means
that two columns are read at once. This is unsuited regarding the blocking approach, where
only one column is required at the same time. To avoid this, the data structure of the input
matrices can be altered, such that two consecutive doubles in memory correspond to the same
column. The conversion is done by DivideBuffer. Doing this, kernels without transposition,
A transposed, B transposed, as well as both A and B transposed were implemented with all
blocking methods. For symmetric blocking the case with both matrices transposed is identical
to the one with none transposed, so it was omitted. For the large 8×8 tiling the B transposed
part was omitted, as the A transposed version turned out not to perform well and the effort
to introduce the special data structure was considered inappropriate.
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Figure 14: DGEMM Kernel Performance Overview

Fig. 14 shows the results using all kernels with all transposition, blocking, and output variants.
All results presented are tuned individually using the best unrolling factor and matrix tiling
sizes.

It is obvious that the 4 × 4 kernel with transposed B matrix is the fastest one. It turns out
that using the MemExport function is generally a bit slower than using Color Buffers. This is
good news as the Color Buffer output offers multiple buffers whereas MemExport is restricted
to a single output causing a problem as described in section 2.5.
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Comparing the output location unveils an interesting fact. For most kernels using the GPU
memory for output is faster, as it is expected. However, for the 4× 4 kernel with transposed
B it is the other way around. Most probably reading the input data exhausts the global GPU
memory bandwidth but data can be written to the host memory independently. This fact is
very welcome, as writing to host memory directly is also the best case from the synchronization
perspective.

In summary the kernel used in all later benchmarks has the following characteristics:

• 4× 4 blocking.

• B matrix transposed.

• Pixel Shader kernel.

• Output done using Color Buffers.

• Output buffer is located in host memory and accessed by the kernel directly via DMA.

• Loop unrolled with an unrolling factor of two.

• k = 1024.

• h ∈ {512, 1024, 2048, 3072, 4096} (chosen by runtime as described in section 2.5.1).

• Texture cache is used in tiled mode.

2.4.2 Scheduling

As for all asynchronous processes scheduling is required in CALDGEMM. The final goal is to
utilize both the GPU and CPU to the full extent and hide all latencies. Further it is desirable
not to split the matrix into too small tiles as both CPU and GPU DGEMM work better on
larger matrices.

GPU/CPU Performance Ratio As described in section 2.3 the matrix is split in two
parts where one part is processed by the GPU and one by the CPU. It shall now be explained
how the best splitting ratio between the two components is determined. Obviously the split-
ting ratio is not a constant but can depend on the input parameters m, n, and k. A plausible
assumption is that it does depend on the size of C but not on the shape, so it depends on
m · n but not on m and n individually.

Fig. 15 visualizes the ratio of GPU and CPU performance as a function of m · n using an
assortment of runs with different m and n. Optimally the plot should show a curve that goes
asymptotic towards a constant for large m · n. Unfortunately, this is not the case. A deeper
analysis unveils that this is related to a slowdown in GotoBLAS for certain input parameters.
The green points in the figure correspond to runs with n = 2048, red points to runs with
n ≡ 0 (mod 4096) and blue points to all other parameters.

To understand the behavior at n ≡ 0 (mod 4096) Fig. 16 shows the performance in a range of
2048 around n = 40960 (which is ≡ 0 (mod 4096)). It clearly demonstrates that the slowdown
only occurs in a small area around n = 40960.

Fig. 17 shows the region near n = 40960 in a higher resolution. To exclude the possibility that
the slowdown is related to the thread count two variants are shown; with similar behavior.
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Figure 15: GPU / CPU DGEMM Performance Ratio
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Figure 16: GotoBLAS DGEMM Performance using 21 Threads depending on n

Fig. 18 shows that there is no such dependence on the m parameter. As a conclusion there
are two special cases, n = 2048 and n ≡ 0 (mod 4096) that have to be treated independently,
otherwise it can be assumed that the ratio depends only on m · n.

Fig. 19 shows two fits to the experimental ratio results. The problematic input parameters are
excluded in this case. In the data for the separated GPU / CPU ratio, independent DGEMMs
were executed on GPU and CPU respectively. However, finally they should run concurrently
and are likely to influence each other. Therefore, a new data-set was created, executing a
combined GPU/CPU DGEMM and measuring the GPU and CPU performance contribution
to the combined DGEMM independently. In this second combined run the scheduling was
based on the data obtained by the previous separated runs. A new fit was done for the new
data-set. The resulting curve is used to determine the ratio for CALDGEMM.

The two cases excluded for the fit are handled the following way: If n is detected to lie in
the problematic region, the ratio is at first determined ignoring the GotoBLAS slowdown.
To account for the slowdown it is then corrected as for a 5% decreased CPU performance.
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This follows the principle introduced in section 2.3 to rather overestimate the GPU perfor-
mance. The small inaccuracy introduced by this is then treated by the advanced scheduling
mechanisms described in the next section.
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Figure 19: Fitted GPU / CPU DGEMM Performance Ratio

One additional fact must be considered. The CPU also has to process the rightmost part of
the matrix, as long as n mod h 6= 0. The size of the overlapping region depends on m and n.
This is handled the following way. First the CPU part is calculated but the splitting position
is not yet adjusted to a multiple of h. It is then downsized to correct for the overlapping
region and only then adjusted to be a multiple of h.

2.4.3 2nd & 3rd Phase

Clearly using only the static scheduling introduced yet will not result in optimal performance
as the duration of a DGEMM call changes randomly. Additionally, to ensure the correct size
of the GPU part of the matrix, the splitting position cannot be chosen arbitrarily but only
in steps of h which is 4096 for large matrices. Therefore, a more fine granular scheduling is
needed. It could be argued that GotoBLAS could process the same tiles used for the GPU.
However, Fig. 20 shows that even the largest 4096 × 4096 tiles are insufficient to achieve
optimal GotoBLAS performance. Therefore, it is desirable to schedule the largest possible
submatrices.
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To account for this a second and third phase was introduced in the scheduler (The first
two CPU DGEMMs already explained are both considered phase one). As just explained,
the splitting position cannot be chosen arbitrarily. The correct splitting position, however,
usually lies between two possible positions, which are h rows away from each other. When
the CPU has finished the first phase run it checks how many GPU tiles are still unprocessed.
It uses the same ratio as for the first splitting to determine how many GPU tiles it should
process. It then takes a rectangular section containing this amount of tiles. This is called
second phase run.

With the CPU having finished its second phase run the GPU is also likely to finish soon. To
process a tile the CPU requires about three times the time the GPU does. However, after the
GPU has finished its last tile the output must still be postprocessed by MergeBuffer. This
takes about as long as the kernel execution. Additionally, in average the GPU will still have
to process 50% of its current tile. This leads to the following rule for third phase runs. As
long as there are still at least two unprocessed tiles the CPU will ”steal” one from the GPU.
All these runs on stolen tiles are called the third phase. Fig. 21 shows an example matrix
distributed between the GPU and different CPU phases. (The second phase is not necessarily
restricted to one row of tiles.)

A

B

C, GotoBLAS, Phase 1a

C, GotoBLAS, Phase 1b

C, GotoBLAS, Phase 2

C, GotoBLAS, Phase 3

C, Processed by GPU

Figure 21: GPU / CPU Distribution of C Matrix
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2.4.4 Transfer Optimizations

Asynchronous Transfer Up until now pre- and postprocessing, DMA transfer to the GPU,
and kernel execution were completely serialized. Only the DMA transfer to the host is already
done in parallel to the computation as described in chapter 2.4.1 and thus completely hidden.
It is desired to parallelize these tasks as far as possible. The solution is to introduce a
pipeline. In the n-th iteration the CPU can preprocess tile n. In the meantime tile n − 1
can be transferred to the GPU via DMA. Concurrently the GPU can already process tile
n−2. And again at the same time another CPU thread can postprocess tile n−3. Using this
to the full extent only leaves the pure GPU calculation time as runtime together with some
overhead. This overhead consists of the accumulated time for DivideBuffer, DMA transfer to
GPU, and MergeBuffer; however, only for a single tile.

With the current drivers, a DMA transfer cannot be started while a kernel is being executed.
However, a DMA transfer that is already running is not affected by kernel execution. There-
fore, in the pipeline the CPU must be two steps ahead of the GPU. Before the CPU calls the
kernel for tile n it must issue the DMA transfer for tile n+1. The overhead consists of the time
for DivideBuffer, MergeBuffer, and twice the DMA transfer. In the implementation, however,
the CPU first prepares only one tile, transfers it to the GPU and calls the first kernel. While
the first kernel is running the CPU preprocesses tile two and three. However, tile two cannot
already be transferred while the first kernel is running. This is the point where the overhead
of the second DMA transfer occurs. Anyway the alternative would be to prepare two tiles in
the very beginning. This is not wanted as DMA transfer time is lower than the DivideBuffer
time (See Fig. 24).

As the MergeBuffer routine runtime exceeded the kernel execution time, or was at least of the
same order of magnitude, to ensure a continuous kernel execution two MergeBuffer threads
are executed. The threads postprocess the output alternately. Now let t be the number of
output threads. Together with one thread for DivideBuffer this makes t+1 threads to handle
the GPU DGEMM.18 As, in addition, the GPU writes directly to one output buffer in host
memory in total t+ 1 output buffers are needed. These are used in a cyclic way.

BBuffers Recapitulating the way the tiles are streamed to the GPU, it becomes obvious
that not all matrices Ai and Bj need to be transferred at the same time. The matrix Ai

is transferred to process Ci,1. The following tiles in the stream, Ci,2 to Ci,n/j also require
Ai which thus should not be retransferred but simply remain on the GPU. Afterwards Ai is
never used again and Ai+1 is transferred. Now consider the B matrix: when calculating C1,1

to C1,n/h each Bj is used exactly once. As long as it is possible to store all the Bj matrices in
GPU memory, they never need to be retransferred afterwards. The buffers for the B matrices
are called BBuffers. The current implementation tries to allocate 21 BBuffers.

For non square C matrices the matrices A and B require a different amount of memory.
Swapping the inner and the outer loop of the streaming process swaps the roles of A and
B in the above consideration. So the buffer in the GPU memory only needs to store the
smaller one. Therefore, currently the buffer is small enough as long as the C matrix’ smaller
dimension is below 21 ∗ 4096. It has to be noted, that the CPU also processes a part of
the matrix. This can be chosen in a way to lower the smaller dimension if it would exceed
the buffer size otherwise. Finally, to exceed the buffer size, C would have to be at least of
dimension 129024× 129025 what would require 124 GB of main memory.

18This explains the t variable in section 2.3.1. The patch already handles the increased GPU thread counts.
All these threads are pinned to core 0.
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Altogether, the BBuffers ensure, that both the A and B matrix are transferred exactly once.
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Figure 22: Process-Flow of new CALDGEMM Implementation

Fig. 22 visualizes the implementation while Fig. 23 show the effect of both optimizations
individually and in combination. It can be seen that both attempts provide a large perfor-
mance benefit. The combination, however, does not result in such a huge leap in performance
because both optimizations approach the same inefficiency. Anyway, especially for smaller
matrices, using the combined implementation delivers by far the best performance.

DivideBuffer & DMA As the GPU kernel can write its result back directly to host memory
also the DivideBuffer routine could write its output directly to the GPU via DMA. This
would make the subsequent large DMA transfer unnecessary. However, Fig. 24 shows that a
DivideBuffer writing directly to GPU memory takes more time than the usual DivideBuffer
and the DMA transfer together. This approach was thus discarded.
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2.5 Patched AMD Driver & Vectorization

Fig. 24 shows the throughput of the DMA transfer and the pre- and postprocessing routines.19

Consider the DMA bandwidth at first. Benchmarks showed a huge dependance on the em-
ployed system BIOS version. With earlier versions the throughput was only about 3 GB/s.
Still with the new version the transfer to the GPU is inferior to the transfer to the host.
This is unfortunate, as only the transfer to the GPU is used in practice (as the kernel writes
directly to the host). However, considering the matrix sizes appearing during the HPL and
remembering that all matrices A, B, and C are transferred exactly once, the GPU transfer is
not so relevant anymore. E.g. for k = 1024, m = n = 81920 the data transferred to the host
is 40 times the data transferred to the GPU.

All versions of the DivideBuffer and MergeBuffer routine were vectorized.20 Prefetches21 are
used and also streaming stores22 are employed where they brought a benefit.

It becomes obvious, that the DivideBuffer routine is much slower when it has to transpose
the input matrix. Section 2.5.1 will answer the question whether this is acceptable.

The results for MergeBuffer need some explanation. Consider only the results without the
hacked driver first. It turns out, that the MergeBuffer routine is faster, when the data is
transferred in one large DMA transfer than when the kernel writes directly to the host memory.
The reason is the following: For the kernel to have access to the memory, the memory region
must be unmapped, i.e. it has no virtual address. For MergeBuffer to access the data, the
memory must be mapped again. This results in one page fault for every page accessed. This
is very unfortunate as the data is only read once. In fact, executing a second MergeBuffer
call on the same buffer, without un- and remapping yields in the same performance as with
the single large DMA transfer.

19The DMA transfer to the host is measured using a different kernel writing to GPU memory, and doing the
DMA transfer afterwards. Obviously, using the best-performing kernel writing direct to host memory, makes
the DMA throughout impossible to measure.

20See Appendix of [Roh1].
21Memory is explicitly loaded into the cache before its actual use to omit memory latencies then.
22A streaming store bypasses the cache and write directly to the memory.
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Thus, the problem is that the driver forbids kernel calls while the memory is mapped, while
it does not forbid explicit DMA transfers. Patching the AMD driver and removing the check
whether the buffer is mapped solved the slowdown. As this is definitely no nice solution,
especially for a release of the library, this will be referred to as the ”Driver Hack” hereafter.23
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Figure 24: Performance of Pre- / Postprocessing and DMA Transfer24

Global Buffer Summary Recall that a global buffer is required for the MemExport func-
tion that is currently not used in CALDGEMM. Therefore, there seems not much sense in
discussing it here. However, the current kernel with 4×4 tiling is coming to its very limit. For
any further performance increase a bigger blocking is required. But then MemExport must
be used and thus also the global buffer.

The problem is: only a single global buffer is usable at a time. Currently, when using t output
threads CALDGEMM requires t+1 output buffers. As only a single global buffer is available,
these output buffers must all reside in this single big buffer. But then a problem arises when
running a kernel and MergeBuffer simultaneously, as MergeBuffer requires the buffer to be
mapped while a kernel without the hack would not start when the buffer is mapped. This
makes the driver hack mandatory when using the global buffer. With the driver hack, the
global buffer can be used in CALDGEMM, only the performance is slightly decreased.

2.5.1 Miscellaneous Optimizations

Tiling Size In section 2.4.1 the effect of the matrix size on kernel performance was analyzed.
It was concluded, that h = 512 can be used for matrices with n < 1024 or m < 1024.
Otherwise, all 1024, 2048, 3072 and 4096 bring good results. However, up until now only
kernel performance was taken into account. Now the effect on overall performance shall be
discussed. Clearly, on the one hand, a larger h reduces the synchronization overhead. On the
other hand, the overhead before the first and after the last kernel call increases. However,
this overhead for large h is constant, so its relative effect should decrease for large m and n.

23AMD is aware of the problem, and for OpenCL kernels the corresponding check is already removed in the
driver.

24In results for DivideBuffer marked as DMA the routine was writing directly to GPU memory instead of
CPU memory. The MergeBuffer result marked as NODMA is a run where the kernel wrote its output to GPU
memory with one big DMA transfer afterwards.
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Therefore, the best tiling size is expected to depend on m and n. Again, it can be shown
that it depends only on m · n so again m = n is assumed. Fig. 25 shows the performance for
different m.

 0

 100

 200

 300

 400

 500

 600

 0  10000  20000  30000  40000  50000  60000  70000

G
P

U
 D

G
E

M
M

 P
er

fo
rm

an
ce

 [G
F

lo
p/

s]

M=N

H = 1024
H = 2048
H = 3072
H = 4096

Figure 25: Performance for different CALDGEMM Tiling Sizes

It can be seen that as expected the optimal tiling size depends on the matrix size where bigger
matrices favor bigger tilings. The tiling size is thus auto-adjusted to be optimal for each input
matrix.

One issue with the automatic tiling size selection shall be discussed. It is unsupported by
the API to transfer only a part of the buffer via DMA to the GPU. As the allocation takes
comparably long the buffers are created when the library initializes. This predetermines
the buffer sizes. As the BBuffers multiply the amount of input buffers it is not possible to
allocate distinct buffers for all tiling sizes. Instead only a buffer for the maximum tiling size
is allocated. For smaller h parts of these buffers are used. This clearly is a huge overhead in
the DMA transfer, especially for a small tiling. However, there is no other possibility to solve
the issue and benchmarks show that performance increases regardless of this inefficiency.

Transposed Matrices Up to now the correct input type was not considered. Both the
possibility to use transposed matrices in the kernel and to transpose the matrix during Di-
videBuffer was discussed. It was concluded that for the kernel a transposed B matrix was
optimal. In contrast, consider a transposed A matrix. Using the transposed B kernel for the
transposed A input both matrixes have to be transposed in the DivideBuffer function, which
is the worst case for the DivideBuffer performance. Alternatively the kernel for the transposed
A matrix could be used resulting in the best case for DivideBuffer. Fig. 26 compares the 4
possible combinations of kernel and input type.

It turns out that the transposed B kernel is faster in both cases. In the end even the transposed
A matrix is faster using the transposed B kernel. The explanation lies in the GotoBLAS
library which is slightly faster when A is transposed. Therefore, the kernel for B transposed
is used for all cases, even when only the A input matrix is transposed.

However, there is still one situation imaginable, where the transposed A kernel could be
an interesting alternative. For smaller matrices the DivideBuffer function consumes a more
significant amount of time. So here the overhead for the transposition weights more and the
transposed A kernel could be faster. The problem is that the data arrangement of the buffer
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Figure 26: Performance for transposed input Matrices

must be declared at allocation time. As, using the BBuffers, much memory is needed for
the buffers it seems inappropriate to allocate all buffers twice, for the transposed and non
transposed case. However, as the transposed A kernel, or the kernel without transposition,
would be used for small matrices only anyway, the BBuffers could be omitted (or reduced)
in that case. Only one additional buffer (or only few) could be allocated for every case and
the library could choose at runtime which kernel to execute. This feature has not yet been
implemented but is planned for a future release.

2.6 Summary & Results

In summary CALDGEMM is implemented the following way:

• The matrix size handled by the GPU can easily be subject to restrictions with the CPU
handling the overlapping parts.

• The transposed B kernel is always used regardless which matrix must be transposed or
not.

• The optimal tiling size is chosen automatically depending on the input matrix size.
Possible values are 512, 1024, 2048, 3072, and 4096.

• The splitting ratio between GPU and CPU is automatically chosen depending on the
input matrix size.

• 2nd and 3rd phase GotoBLAS runs ensure that both GPU and CPU are fully utilized
and do not idle.

• Using a pipeline, asynchronous transfer, and buffers on the GPU can make the GPU
execute DGEMM kernels continuously.

• A patch needed to be applied to the AMD driver to achieve full performance.

Finally CALDGEMM can deliver a pure DGEMM performance of 620 GFlop/s on our test
setup. The DGEMM performance does not depend on whether matrices are transposed or
not. It slightly depends on the input parameters but stays high as long as the matrices do
not get too small. Fig. 27 gives an overview of the final CALDGEMM performance.
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Figure 27: CALDGEMM Performance Overview

3 GPU based HPL

3.1 Integrating CALDGEMM

In the previous sections a fast DGEMM implementation was developed. This will now be
integrated in the HPL. CALDGEMM only provides DGEMM but no full BLAS capability
and it is based on GotoBLAS itself. Therefore, a combination of HPL, CALDGEMM, and
GotoBLAS is used. The question is how to integrate CALDGEMM. As CALDGEMM is itself
multithreaded and already involves multithreaded GotoBLAS calls, the common approach
with multiple MPI processes per node, one per core, is not suited. Lots of problems would
arise, e.g. which process would use the GPU, how to handle processes with different DGEMM
performances, etc..

The way to go is a single MPI process per node, which is itself multithreaded. For the HPL
pthreads and TBB25 were used. As a result, other tasks apart from DGEMM had to be
parallelized. The LASWPs, DLATCPY and DLACPY were parallelized and vectorized.

Some initial benchmarks revealed that k = 1024 is an appropriate value for the GPU. Lowering
k will reduce the GPU DGEMM speed whereas the previous analysis showed that increasing
k further makes no sense.

Throughout an HPL run there are lots of DGEMM calls in the factorization and one huge
DGEMM call outside the factorization. First some statistics about the DGEMM parameters
and the time distribution of the DGEMMs were collected.

Fig. 28 shows that the large DGEMMs with big m and n are called exclusively with k = 1024.
As expected Fig. 29 shows that DGEMMs with a significant distribution to the overall time
are all executed with k = 1024. It was thus decided to use CALDGEMM only for the one
single DGEMM outside the factorization step. In later attempts all other tasks of the HPL
are hidden as far as possible to keep the GPU executing DGEMM kernels all the time.

The first GPU HPL version is implemented as shown in Fig. 30. The factorization and the
pivoting is multithreaded. The DGEMM is multithreaded as well and in addition using the

25Intel Threading Building Blocks [Int2].
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Parameter during HPL Run

GPU. Currently, the broadcast of the panel and the U -matrix is serialized and obviously not
multithreaded.
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Figure 30: Process-Flow of GPU-based HPL

3.2 Optimizing HPL

The first implementation naturally leaves much room for improvement. At first the given
HPL parameters are tuned to its best. Most parameters affect the network or the recursive
factorization. For the Factorization the best parameters turned out to be (See [Hpl]):

• NBMin = 64

• NBDiv = 2

• Panel factorization: Crout oriented
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• Recursive factorization: Left oriented

3.2.1 Alignment

Another optimization applied was a correction to the alignment. HPL usually aligns data to
eight doubles, which already aligns the matrices to cache line size. However, multiple rows
(or columns in col-major) are likely to have the same cache tag, so when accessing a single
column only a fraction of the cache is used. The stride between the rows was thus altered such
that the full cache is used. This change in the leading dimension of A in particular speeded
up the LASWP processes.

These alignment corrections are also applied to the U -matrix, that is stored externally in
multi-node runs.

3.3 Multi-Node HPL

With CALDGEMM integrated in HPL multi-node runs are immediately possible, however,
lots of tuning can be applied. Again the available HPL parameters are tuned first. Fig. 31
shows that the long transfer mode is superior to the ring transfer mode (See [Hpl]). The long
mode is usually used for fast nodes with a (relatively) slow network. In the LOEWE-CSC
both the nodes and the network are very fast so it was not immediately clear which algorithm
to use. Finally, for the cluster the modified long mode even performs better when using an
increased amount of nodes. It also shows, that the original lookahead with depth one as
implemented in the HPL has a negative effect. (Still, with the lookahead the performance of
the ring and long transfer mode is equal. This shows that the lookahead successfully hides
the communication time.)

As the cluster is equipped with QDR Infiniband the effect of RDMA was measured. Fig. 32
shows that using RDMA gives a performance increase.26

It turned out that copying the L-matrix for the transfer such that a continuous memory
segment can be transferred brings a performance boost. It further turns out that transferring
the entire L-matrix with the additional padding for correct alignment is faster than omitting
the padding during the transfer.27
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26Unfortunately, currently there are unsolved problems that lead to errors when using PCIe DMA transfer to
both, the GPU and IB at the same time. It only leads to instabilities when running with multiple hundreds of
nodes. The following exemplary benchmarks were mostly done on four nodes with RDMA enabled. However,
for large runs on the cluster RDMA has to be disabled for the time being.

27This clearly makes sense since without a padding no continuous segment is transferred any more.
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3.4 Lookahead

As the original lookahead algorithm seemed useless a completely new lookahead was developed
from scratch. The idea is to hide the factorization and the broadcast, and later even the swaps,
to keep the GPU running DGEMMs at 100% of the time. The lookahead is implemented in
multiple steps.

3.4.1 Lookahead 1

In a first lookahead step especially the panel broadcast time shall be hidden. (Panel broadcast
takes much longer than U -broadcast.) As a matter of fact the panel broadcast requires
the factorization to have finished. Therefore, to hide the panel broadcast also the panel
factorization must be hidden.

Looking at the algorithm reveals, that the factorization only requires the DGEMM of the
previous iteration to finish the first nb columns. Thus, it is possible to start with the next
factorization while the DGEMM is still running. Having finished the factorization the panel
can be broadcasted in parallel to the DGEMM computation, too. As the small column
count of 1024 is unsuited for the GPU the first nb columns are excluded from the GPU
DGEMM and handled by the CPU before the CPU even starts its large DGEMM. Between
the two DGEMMs the CPU does the panel factorization and broadcast. This also makes the
synchronization easier compared to the scenario where the GPU would process the first nb
columns (with the streaming direction altered such that they are processed first).

A ”Linpack-Mode” was introduced in CALDGEMM, where it supports callback functions for
the factorization and broadcast. The first lookahead implementation is visualized in Fig. 33.
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Unfortunately, this collides with the GPU/CPU ratio calculation in CALDGEMM, as the
CPU is no longer only calculating DGEMM. The available time of CPU and GPU is different
so the ratio can no longer be calculated considering only the performance. To account for
this, in Linpack-Mode CALDGEMM continuously measures the CPU and GPU performance
and the time required for the transfer and the factorization and adjusts its ratio using a fil-
ter incorporating the new data. With r the old ratio, g the GPU performance, c the CPU
performance, tg the GPU DGEMM time and tc the CPU DGEMM time the new ratio r′ is
calculated as r′ = 1

2 · (r +
g

c′+g ) with c′ = ctc
tg
. As the factorization is not called each itera-

tion in multi-node runs, but depends on the position inside the grid, CALDGEMM respects
the grid position and maintains ratio parameters for usage with and without factorization.
CALDGEMM continuously rechecks whether the ratio used was appropriate. If that is not
the case it reinitializes the database. For the (re)initialization an empirically chosen penalty
is applied to the CPU performance to correct for the factorization time.

Maximizing CPU Utilization In the first step the broadcast time was hidden, however,
most CPU threads are still idling during the broadcast. This can be solved by starting an
additional DGEMM with a thread count reduced by one. Here two possibilities exist:

• One CPU core is reserved exclusively for the broadcast. It is idling afterwards. The
DGEMM can immediately start and process the entire matrix.

• Two DGEMMs are executed. A first one using all but one cores. This one core handles
the communication. After the broadcast has finished a second DGEMM is started using
all available cores.

Fig. 34 shows that the dynamic CPU scheduler that starts two DGEMMs is slightly faster.
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Figure 34: Performance using Dynamic CPU Scheduler

Some more details on the dynamic CPU scheduler shall be given. It is difficult to synchronize
the first DGEMM to finish exactly when the broadcast completes. In fact it is impossible.
What CALDGEMM does is: it continuously measures the broadcast time. It knows the CPU
DGEMM performance and can thus guess how large the matrix for the first call should be,
so that the call finishes shortly after the broadcast. Some extra time is added to correct
for variations in the broadcast time. When CALDGEMM finds out that this first call would
already process most of the matrix it does not split in two calls, because the second call would
then process only a small matrix and thus be slower, although it could use an additional core.

In case the predicted broadcast time underestimated the real time the first DGEMM finishes
before the broadcast. As it makes no sense to wait for the broadcast to finish, the second
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DGEMM is then called without the additional core. Alternatively the second DGEMM could
be started with the core while the broadcast is still running. But then one GotoBLAS thread
would have a decreased performance what in the case of GotoBLAS can have a tremendous
effect on overall performance.

Fig. 35 shows the improved lookahead with the dynamic CPU scheduler.
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Figure 35: Process-Flow of GPU-based HPL with Lookahead 1 (ii)

Maximizing CALDGEMM GPU Performance Unfortunately, benchmarks revealed
that the lookahead mode - as just explained - is inferior to the version without lookahead. It
turned out that this is related to a decreased GPU DGEMM performance. The GPU contri-
bution to the DGEMM drops from about 450 GFlop/s to only 400 GFlop/s. However, this is
the effect on the overall GPU DGEMM performance. The factorization and the broadcast do
not last for the entire DGEMM. But as long as they are active they reduce GPU DGEMM
performance to about 300 GFlop/s. (When the broadcast has finished performance comes
back to 450 GFlop/s resulting in an average of 400 GFlop/s.)

It turned out that the reason for this is a greatly reduced performance of the MergeBuffer
routine due to memory congestion. This can be solved by using an additional merger thread,
so increasing t from 2 to 3. This was implemented in a way, that the additional thread is only
active during factorization and broadcast. Fig. 36 show a process-flow diagram.

Unfortunately, this approach did not solve the reduced overall performance at all. As expected
the GPU DGEMM performance came back to normal. But the factorization and broadcast
time increased by an order of magnitude and thus exceeded the DGEMM time. The problem
just moved to another spot.
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Figure 36: Process-Flow of GPU-based HPL with Lookahead 1 (iii)

Avoiding Memory Congestion using the AMD Driver Patch It shall be noted here,
that the above tests were made before the driver hack was done. With the driver hack a new
approach was followed. The driver hack allows for a reduction of the output thread count to
a single thread while still achieving 620 GFlop/s DGEMM performance. Going back to the
previous Lookahead version without the additional merge thread but using the driver hack
helped, but did not solve the problem.

The full GPU performance was finally achieved by a reduction of the factorization thread
count. Actually the factorization performance did no even suffer much. Before going to the
process diagram again, the effect on GPU performance shall be analyzed. In the following
the factorization thread count is generally reduced, so that only eight cores are active. This
leaves 7 − t threads28 for the factorization. As the driver hack is not generally available,
also the performance without hack is analyzed. Fig. 37 shows the performance with and
without lookahead throughout an HPL run. The x axis is the iteration number in HPL, so
for high x the matrix size decreases. The x axis is not proportional to the time, as the first
iterations need much more time than the later ones. Runs with the driver hack require only
a single output thread. In contrast, versions without hack and two or three output threads
respectively are shown.

It can be seen that with the driver hack and only a single thread both curves are very much
alike. This means GPU DGEMM performance no longer suffers when enabling lookahead. For
the curves without hack the GPU DGEMM performance is significantly lower when enabling
lookahead. A confusing observation is, that for big x, the GPU DGEMM performance is
even higher with lookahead than without. This is due to the fact, that only the raw GPU
contribution to the DGEMM performance is shown here. With lookahead the CPU performs
the factorization and the broadcast during the GPU DGEMM. At high x the factorization

28t is the number of concurrent output threads as defined in section 2.3.1.
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Figure 37: GPU Only DGEMM Performance for Lookahead during Linpack

takes up a significant amount of the iteration time. This reduces the part of the DGEMM
processed by the CPU and increases the GPU part. However, a bigger GPU matrix can
increase the GPU DGEMM performance as the pipeline can better hide the latencies. Finally,
Fig. 38 shows that the combined GPU/CPU DGEMM performance is still higher without
lookahead as it is expected.
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In combination with the driver hack and the reduced factorization thread count the lookahead
is finally working well. Fig. 39 shows the performance with different output thread counts
with lookahead and without. Finally Fig. 40 shows the process-flow with lookahead.

3.4.2 Lookahead 2

In the next step the time for the pivoting shall also be hidden. The DGEMM requires
two processes to have finished: the swapping of the rows and the DTRSM which does the
triangular solve on the U -matrix. However, it is possible to swap only the first x columns and
run DTRSM only on the first x columns of the U matrix. Then the DGEMM can already
process the first x columns of the C-matrix. This shows that the pivoting and the update can
also be pipelined.

This is implemented in the way, that at first nb + hmax = 1024 + 4096 = 5120 columns
are processed. Afterwards even with h = 4096 the GPU can immediately start processing

30



G
P

U
C

P
U

Time

Core 0
Core 1
Core 2
Core 3
Core 4

Core 7
...

Core 8

Core 23

...

...

...

U 
BCAST

L
A

S
W

P
 +

 D
T

R
S

M

GPU DGEMM KERNEL

DivideBuffer, Initiate DMA Transfers, Call GPU Kernels

Merge Buffer

GotoBLAS CPU DGEMM

Cols 1024-n, Rows 0-k

G
o

B
,

-
2

4
o

t
L

A
S

 C
o

ls
 0

1
0

F
a

ct
ri
za

to
n

o
i

PANEL
BROADCAST

Iteration N Iteration N+1

Cols l-n, Rows k-n

o
B

G
to

L
A

S
ls

 
,
R

o
w

s
-n

C
o

1
0

2
4

-l
 

 k

Figure 40: Process-Flow of GPU-based HPL with Lookahead 1 (iv)

columns 1024 to 5120. (The first 1024 columns are skipped as they are completely processed
by the CPU for lookahead 1 afterwards.) Concurrently LASWP and DTRSM is iterated
over the entire matrix. CALDGEMM checks, before it processes a tile, whether the swaps
and DTRSM for the corresponding columns have already finished. The amount of columns
processed in each LASWP/DTRSM iteration is continuously increased by a factor of two, as
LASWP and DTRSM is faster for a bigger data.

The first lookahead 2 implementation suffered from the same problem as the initial lookahead 1
implementation. To avoid memory congestion the number of threads processing the LASWPs
has also been reduced as for the factorization. As the LASWPs are memory bound it seems
reasonable to employ all available memory controllers. This is done by using only even
numbered cores, thus half of the cores at each die. (The version is called improved lookahead
2.) Fig. 41 Shows a process diagram with lookahead 2.

Fig. 42 shows the time required for each HPL iteration using lookahead 1 and lookahead 2. It
can be seen that they are very much alike. Fig. 43 shows the time difference. It reveals that
lookahead 2 is faster at the beginning of the linpack run, but gets slower towards the end.
Therefore, a mixed lookahead 2 was implemented, that switches back to lookahead 1 where
the new variant gets slower.

Fig. 44 shows the performances for the multiple lookahead 2 implementations. Only the
mixed implementation can slightly outperform the lookahead 1 code. Finally, Fig. 45 shows a
comparison of single-node and multi-node runs without lookahead and with lookahead 1 & 2.
It can be seen that also the single-node performance improved. This is due to the fact that
not only broadcast time but also factorization and LASWP time is hidden. In the end the
lookahead 2 did not bring the significant improvement that was expected. Reasons for this
will be analyzed in the next section.
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Figure 41: Process-Flow of GPU-based HPL with Lookahead 2
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3.4.3 Performance Analysis

Finally, in this section it shall be analyzed how well the CALDGEMM features work within
HPL. Also the effects of the lookahead optimizations will be discussed further.

CALDGEMMPerformance in HPL At first an overview over the CALDGEMM schedul-
ing efficiency shall be given. The splitting location for the first phase CALDGEMM Goto-
BLAS run cannot be chosen arbitrarily. The exact location lies inside a row of tiles. Therefore,
it is very probable, that when the first phase is finished there are still tiles unprocessed. Ap-
plying the same ratio again for the second should assign tiles within this row of tiles to the
CPU. If the ratio is chosen optimally, obviously no third phase run is needed. Fig. 46 vi-
sualizes the scheduling in an HPL run without lookahead. It shows the number of rows of
tiles processed in the second phase and the total number of tiles processed in the third phase.
The scheduling is considered optimal, when the second phase value is one and the third phase
value is zero. However, as the exact splitting position jumps randomly, even for an optimal
scheduling the phase two value should drop to zero sometimes. Applying these criteria the
figure reveals that the scheduling is mostly optimal.

In contrast, Fig. 47 shows the same plot using lookahead 2. It can be seen that the second
phase value is still quite optimal. In contrast, the third phase value has a broader distribu-
tion. The reason is that the parallel factorization and swapping introduce additional inherent
inaccuracy into the ratio calculation. Anyway, still the third phase value drops to zero for
quite some iterations. Therefore, the scheduling can still be considered optimal. To lower the
amount of third phase CPU tiles the ratio must be adjusted for a faster CPU. But then, in
the iterations without third phase CPU runs, the GPU would probably have to wait for the
CPU wasting quite some time.
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Figure 47: Analysis of CALDGEMM
Scheduling Efficiency with Lookahead 2

For a further scheduling analysis Fig. 48 shows the total GPU utilization time, the total CPU
utilization time and the CPU DGEMM time. (Obviously the difference between total CPU
time and CPU DGEMM time is the sum of factorizations, LASWP and DTRSM time.) One
can see a jump in the CPU DGEMM time, this is exactly at the position where the mixed
lookahead switches to mode 1. Afterwards the LASWP and DTRSM time is excluded from
the plot, as it lies outside the CALDGEMM call.

Finally, the total CPU and total GPU time are almost the same. Fig. 49 shows the difference
of the two. For processing one tile (assuming h = 4096) the GPU requires below 75 ms, the
CPU below 230 ms. Thus, the scheduling can be improved as soon as the difference is above
230 or below −75. It can be seen that the latter is never the case. In total, the difference
reaches up to 250, which, however, does not allow for much optimization. It should also be
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noted, that at many points the GPU performance is overestimated, what is reflected here:
The CPU idle time is higher than the GPU idle time.

In addition to the time difference, the GPU wait time is shown. This is the amount of time the
GPU thread is really waiting for the CPU thread’s mutex to unlock. Optimally they should be
of equal absolute value. This is, however, not completely ensured because the synchronization
is not perfect. Still, the numbers agree with only small deviations.
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HPL Overall Performance Recall that the lookahead 2 performance was a bit disap-
pointing. A reason is given by Fig. 50. The LASWP and DTRSM time increases significantly
when executed in parallel to the DGEMM.
Fig. 51 shows the same data for the factorization time. In comparison with lookahead 2, looka-
head 1 also hides the broadcast not only the factorization thus resulting in greater speedup.
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ing Linpack
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Figure 51: Factorization Time during Lin-
pack

Finally Fig. 52 shows how the multi-node Linpack performance evolved over the time with
more and more patches.

4 Torture Tests

Measuring the GPU temperature revealed, that the kernel that comes close to peak perfor-
mance can easily overheat GPUs. For all the tests, both system and GPU fans were pinned
to 100%. However, this opens the possibility to use CALDGEMM as a torture test.

CALDGEMM should be superior to single-node HPL in this discipline, because it can keep
executing GPU kernels all the time, whereas HPL is pausing GPU execution from time to time.
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Figure 52: Linpack Performance Evolution Summary

The CALDGEMM benchmark / torture test was originally supplied with two initialization
methods, a fast method that initialized all matrices with zero; used only for performance
tests. And an equally distributed linear congruence random number generator (RNG) in the
range (0 : 1). Fig. 53 unveils an interesting fact: The single-node HPL causes much more heat
on the GPU than CALDGEMM using the RNG. CALDGEMM using the zero initialization
is way behind. This is due to the fact that no bits are flipped in the GPU.

The reason for CALDGEMM to stay cooler than single node HPL turned out to be the random
number generator. The CALDGEMM RNG range was changed to (−0.5 : 0.5) and later to
(−10 : 10). Both brought an improvement but HPL still got hotter. As HPL multiplies
matrices that are already altered in the factorization process, the HPL matrices are not in
the range (−0.5 : 0.5) even though the HPL RNG produces numbers in this range. The
factorization makes the entries in the HPL matrix rather gaussian distributed around zero.

A RNG with a gaussian distribution with estimation value zero and variance 25 was imple-
mented into CALDGEMM, which finally resulted in the same temperature than single-node
HPL. No possibility was found to optimize the torture test any further.

Fig. 54 shows the torture test with gaussian RNG and single node HPL on different nodes. It
can be seen that the temperature of both benchmarks is the same, however, the temperatures
between the nodes differ tremendously, with some nodes overheating very soon, while others
stay below 85◦C.
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5 DGEMM & Linpack Performance

In summary, Fig. 55 shows the peak performance per node reached in various disciplines.
Tab. 56 shows the numbers again with the efficiencies related to the theoretical peak perfor-
mance of the device. The kernel itself can utilize above 90% of the GPU peak performance.
The DGEMM can utilize above 80% of the combined GPU/CPU peak performance. Finally,
the single-node HPL can still achieve more than 75% of the theoretical peak performance.
When it comes to network efficiency (Tab. 57) shows that the lookahead is able to almost
conserve the single node performance. The multi-node version looses less than 7%. Finally
Tab. 58 shows that the HPL scales well to many-node systems. The efficiency does not suffer
significantly when going from 4 to many-node. The number reported to the Top500 list is
285.2 TFlop/s which made the LOEWE-CSC ranked place 22 in the Top500 and place 8
in the Green500 in November 2010.
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Figure 55: Peak Performances achieved with CALDGEMM / Linpack

Discipline Performance Reached Peak Performance Efficiency
DGEMM Kernel 494.07 544.00 90.93%
GPU DGEMM 465.32 544.00 85.54%
GPU/CPU DGEMM 623.52 745.60 83.63%
Single-node HPL 563.20 745.60 75.54%
Multi-node HPL (2x2) 526.25 745.60 70.58%

Table 56: Peak Performance and Efficiency per Node

Discipline Multi-Node Performance Peak Performance29 Efficiency
Single-node HPL 563.2 563.2 100.00%
Multi-node HPL (2x2) 2105.0 2252.8 93.43%

Table 57: Network Efficiency

29The peak performance for the network efficiency is not calculated by the accumulated peak performances
of the nodes, but by the highest linpack performance achieved in single-node runs times the number of nodes.
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Discipline Performance Reached Peak Performance Efficiency
Single-node HPL 563.2 745.6 75.54%
Multi-node HPL (2x2) 2105.0 2982.4 70.58%
Many-node HPL 285200 409248 69.69%

Table 58: Multi-Node Performance

6 Perspective: Multinode Linpack, Lookahead 3

Considering the improvements with lookahead 2 it is questionable whether performance can
be increased significantly by hiding the U -broadcast time. Still, this is an option for the
future. In addition, the free CPU cores during factorization and LASWP could be used to
contribute to the large CPU DGEMM. This should be possible, as it was already shown that
a CPU DGEMM does not slow down the GPU. It is unclear, however, what will happen when
running factorization and DGEMM in parallel.

A problem arising here is that the GotoBLAS library is currently not capable of running
independent multiple tasks simultaneously. The GotoBLAS patch would have to be improved.
To be able to hide the U -broadcast some more parts of the DGEMM would have to finish
earlier, e.g. the first 1024 columns.

A different subject that can definitely increase the performance is the usage of multiple GPUs.
Then a second core should be used for a second MergeBuffer process.

Fig. 59 shows a process-flow with some ideas for the future.
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