
Syscore Board v. 1.0 Flash Interface

David Rohr

21.3.2008

This document refers to Syscore Board v. 1.0 with a Virtex4 FPGA, an Actel ProAsic3 CPLD and
16 MB of onboard flash RAM. It contains a description of the software and VHDL design that can be
used to store and retrieve Virtex bitfiles in the flash RAM. As a second functionality the Actel design
will be able to check the Virtex status and reprogram the Virtex if needed. Two different bitfiles will
be stored in the flash RAM chips. The user will either be able to select the file to program by jumper
or there will be a full bitfile for initial programming and then only a partial bitfile for continous refresh
in the second flash chip.

1

Contents

1 Tools 3
1.1 PC Components . 3
1.2 Virtex4 Components . 3
1.3 Actel Components . 3

2 Design 4
2.1 Component Diagram . 4
2.2 Component Description . 5

2.2.1 flash access . 5
2.2.2 virtex ok . 6
2.2.3 write top . 6
2.2.4 virtex check . 6
2.2.5 virtex programmer . 6
2.2.6 actel top . 7
2.2.7 flash access controller . 7

3 C programs and RS232 Interface 7
3.1 Interface . 7
3.2 PPC Program . 7
3.3 PC Program . 8

3.3.1 Commit Chip Erase [e] . 8
3.3.2 Ident Device [n] . 8
3.3.3 Reset Interface [r] . 8
3.3.4 Ping [p] . 8
3.3.5 Low Level Write [o] . 9
3.3.6 Low Level Read [k] . 9
3.3.7 Write Single Byte [w] . 9
3.3.8 View Single Byte [v] . 9
3.3.9 Upload File [u] . 9
3.3.10 Download File [d] . 10
3.3.11 Copy from PPC Address [a] . 10
3.3.12 Extract Binfile from Bitfile [x] . 10
3.3.13 Upload Bin/Bitfile [b] . 10
3.3.14 Show Bitfile Information from Flash [i] . 10
3.3.15 Download Binfile [l] . 10
3.3.16 Test Sequence [t] . 11
3.3.17 Change Debug Mode [m] . 11
3.3.18 Print Help [h] . 11
3.3.19 Quit [q] . 11
3.3.20 Set Virtex ok disable state to 1 [z] . 11

2

1 Tools

1.1 PC Components

The component that handles the communication for the pc side is a simple c++ program for windows
written in Visual Studio 6. Most OS dependant function have been collected in os.cpp, so it should
be easily portable to other operating system by accomodating this file.

1.2 Virtex4 Components

Tools used to create the Virtex4 components are Xilinx ISE and Xilinx EDK version 8.2i service pack
2. The Virtex4 was programmed using standard tools.

1.3 Actel Components

Actel Libero IDE 8.1 was used for creating and compiling the Actel deesign. Though flashing the
design to the actel was way more complicated than expected. Flashing the Actel chip with FlashPro
6.1 or FlashPro 6.2 software fails with an error, saying the flash programmer “FlashPro Lite” was
not compatible with the ProAsic3 chip family on the Syscore board. A research on the Actel web
site came to exactly the same conclusion. The “FlashPro3” Programmer should be used for this chip
family. Contrary to the “FlashPro Lite” the “FlashPro3” would also have an USB interface instead
of the parallel interface, that could be used easier on recent computers.

However it is a fact that the FlashPro Lite has been used to program the Syscore board before
on another computer. A comparison of the software versions revealed that FlashPro 6.0 was installed
there. A first attempt with FlashPro 6.0 failed again. But no longer complaining about incompatibility
it stated that the ident code was unknown. It then turned out that FlashPro 6.0 could program the
ProAsic3 chip using FlashPro Lite programmer when opening the project file that was used before
instead of creating a new one.

For this reason a copy of FlashPro 6.0 and the FlashPro project file are included in the directory
“save/actel flash pro”. No installer needs to be run. The FlashPro 6.0 can just be copied to hard disc
and by using the supplied project file programming the chip using the FlashPro Lite is possible.

Another problem with the FlashPro Lite is it’s parallel interface. The programmer will only work
with an ECP capable parallel port. Further it needs the 5V voltage supplied by the parallel port.
So attempts with an USB to parallel converter failed. Therefore the programming was done with a
second laptop, old enough to still have a parallel port.

3

2 Design

2.1 Component Diagram

PC PPC

Virtex4

RS232

Flash
Access

Virtex OK

OPB Bus

Actel
Bus

Select
Map

virtex_ok/actel_bus(5)

reset/actel_bus(0)

strobe/actel_bus(1)

we_n/actel_bus(2)

data_io/actel_bus(3)

actel_ready/actel_bus(4)

write_top

virtex_
check

virtex_
programmer

flash_
access_
controler

actel_top

virtex_ok

program_n

led

actel_bus(4:0)

FLASH

Multiplexer

led

FLASH

select_
map

led FLASH

jumper

PCI Registers

access_complete

run_command

PCI Registers

access_complete

run_command

program_n

Actel

4

2.2 Component Description

The Virtex design is stored in Linux9 folder, the Actel design in test write neu folder. A set of working
bitfiles and a c++ binary is stored in the working design folder.

2.2.1 flash access

This component is required to read/write data from/to flash RAM using a PC. The following ad-
dresses are available relative to OPB bus base address.

flash access OPB bus addresses
IDCODE ADDR 000 RO Can read OPB IDCode constant X“41465031” (AFP1)
CHECK IDLE ADDR 001 RO Returns 1 if both, Actel and Virtex state machines are idle
RESET ADDR 010 WO Write any data to reset Actel and Virtex statemachines
GEN WRITE ADDR 011 WO Write 8 bits (15:8) to 8 bit address (7:0)
DATA READ ADDR 100 RW Write any data to copy Actel read out register to Virtex read

out register. Read to read out Virtex read out register. Bit
31 will then contain actel ready signal

DATA WRITE ADDR 101 WO Write 8 bit to Actel flash access controller PCI data register
ADDRESS REG ADDR 110 WO Write 24 bit to Actel flash access controller PCI address reg-

ister
COMMAND REG ADDR 111 WO Write 4 bit to Actel flash access controller PCI command reg-

ister. Writing to this register will start the PCI command on
the Actel side

(Given are address bits 27 to 29, bits 30/31 are tied to zero because of DWORD addressing, re-
maining bits are ignored)

Flash access from the PPC side is completely transparent and only handled by access to these ad-
dresses. Though committing PCI write commands will write to the flash chip and not to direct flash
RAM addresses. It is necessary to send commands to the flash memory controller to actually store
data in the flash RAM as described later. The PC program though will handle this of course.

In the following the communication between flash access and the Actel CPLD will be described
in detail. All write commands (to PCI data, PCI address or PCI command register addresses) will
internally be translated into gen write commands. Each gen write command will write 8 bit to the
corresponding register in the Actel chip addressed by the 8 bit gen write address. So 16 bits need to
be transmitted. Those bits are transferred bit by bit through the one bit serial data io/actel bus(3)
pin. The 24 bit address is split into three 8 bit registers and the access to the OPB address register
address will transparently be split into three gen write commands. A gen write cycle will hold the
first bit on the io pin, then hold strobe high for 8 clock cycles (because of different clock speeds), then
hold strobe low for 8 cycles, then shift the bits put on the io pin and repeat the procedure until the
entire 16 bits have been transmitted. When not in gen write state the io pin is tristated.

The read process is similar though there is no read address. The Actel provides an 8 bit read
register that is read bit by bit every time we n falls to low. The Actel has an internal counter so
that after 8 read cycles the read register is refreshed from the flash interface read register. So when a
new connection to the actel is established a reset command should be execured to reset this counter.
Again: The read process itself is started when writing to the DATA READ ADDR what will copy
the read out register from Actel to Virtex. To actually read the data an OPB read command must
then be run on DATA READ ADDR.

The flash access entity consists of two state machines. One for handling OPB commands and an-
other for the Actel communication. OPB read commands can always be initiated and will read the

5

appropriate data. (Data read from DATA READ ADDR are internally stored in a register that can
always be read). Write commands however will only succeed when the second state machine is in idle
state (This can be checked with CHECK IDLE ADDR). Then the VHDL signal WRITE TO ACTEL
is set 1 for twp cycles for the Actel communication state machine to copy the OPB Data bus to internal
registers.

2.2.2 virtex ok

virtex ok is a simple component that will output a slow clock that can be controlled by the Actel chip.
When the clock stops running the Actel should reprogram the Virtex. The component will accept
OPB Writes to it’s base address and then enable or disable the clock depending on the OPB Data.

2.2.3 write top

This is the top component in the Actel design. It’s main purpose is to multiplex data between
virtex programmer and actel top component. The operation mode is determined by the jumper
settings. With both jumpers open the actel chip will be hold in reset mode. With the reset jumper
(CON2) unconnected but the con1 jumper closed the actel top component will be enabled so data
can be read from and written to flash. With the reset jumper (CON2) closed the virtex programmer
component is active and CON1 jumper is passed to it. The write top component also acts as tristate
buffer for some signals and sets some default values for flash reset, usb reset etc.

2.2.4 virtex check

This will just check if the slow control clock coming from the Virtex runs and then sets program n
correspondingly. With program n low the virtex programmer entity should start reprogramming the
Virtex.

2.2.5 virtex programmer

The component will evaluate the virtex ok signal from the virtex check component. To program the
Virtex at first prog b is pulled low to do a full chip reset on the Virtex (S Prog b 0). It will then
wait for the init b pin to raise high (S Prog b 1). Now the Virtex is ready for programming. Before
programming the binfile’s size stored in flash is read during 3 states (S Size 1 to S Size 3). The
jumper con1 decides which flash chip is used. Afterwards CCLK is clocked once (S Sync 1, S Sync 2)
, then cs b set low. Then the binfile is clocked out with the CCLK to the Virtex (S Fetch Data,
S CCLK 1, S CCLK 2). The process should be transparent to the user as the binfile already contains
the synchronize and the start sequence for the Virtex. For this to operate correctly the startup clock
must be set to CCLK and the done pin must be driven high during startup. The corresponding
options need to be enabled in Bitgen. After the programming has finished the Actel will wait some
time (S Reset) and then return to it’s observation mode (S Idle) and check the Virtex clock again.
If an error occurs during programming (init b does not become high, a busy signal is received or the
done signal does not go high) the Actel will enter its error state indicated by LED1 blinking. This is
important for debug purposes right now. Alternatively this could be changed into reprogramming the
Virtex again after an error occurred when installed in an experiment later. There is an alternative
to entering observation mode after programming. If the par refresh partial binfile parameter is set
1 the actel will permanently program the Virtex again out of the second flash chip. (The initial
programming will use the first flash chip and CON1 jumper is ignored). This is used in conjunction
with a partial binfile stored in the second flash for example to keep the Virtex programming alive even
if the Virtex is exposed to radiation which otherwise would destroy the programming and leave the
Virtex inoperable. The bit order of the flash data passed to the select map pins is reversed because
the Virtex, when in 8 bit select map mode, requires reversed bit order.

6

2.2.6 actel top

actel top will handle the communication between the Virtex and flash access controller. The in-
coming signals strobe and we n are converted into we n shift and strobe previous that indicate a
rising/falling edge of the signal. When we n shift is pulled the output register is at first copied from
the flash access controller output register (controller reg data read) and then shifted 7 times. While
we n is low the corresponding bit is laid on the data io pin. When we n is high the pin is tristated.
When writing to the Actel always 16 bits are received. Those are split into data and address bits
and made available through gen write addr i and gen write data i wires. After address and data have
been completely received they must be evaluated within one clock cycle. The following addresses are
used right now:

Actel Register Addresses

REG DATA A 8’h01
REG CMD A 8’h02
REG ADDR 0 A 8’h03 write only, bits 7:0 of the address register
REG ADDR 1 A 8’h04 write only, bits 15:8 of the address register
REG ADDR 2 A 8’h05 write only, bits 23:16 of the address register

When writing data to the command register run command is set 1 the next clock cycle so flash access controller
will run the PCI command. The component will then wait for controller access complete from the
flash access controller and then reset the command register to 4’b0001. Then the actel ready signal
goes ready again and a new command can be committed.

The bit order is reversed in this component to account for OPB bus bit order.

2.2.7 flash access controller

This component has PCI registers (data, address, command) as input. When the state machine is idle
and run command is high the PCI registers’ data is executed as PCI command. All read commands
will write the data read from flash to flash read data reg and pass this to actel top. Write commands
again do not result in direct writes to the flash RAM but just write to the flash memory controller.
Commands that can be send to the controller are listed below when describing the c program.

3 C programs and RS232 Interface

3.1 Interface

A PC and a PPC C-program will communicate through an RS232 Interface. The interface runs up
to a baud rate of 57600 baud. Higher baud rates might result in errors. Optimization here naturally
is possible. The PPC program uses the XUART commands while the PC program uses standard
Windows API (CreateFile / ReadFile / WriteFile).

3.2 PPC Program

On the PowerPC a C-program runs that communicates with a computer through the RS232 interface
and with flash access and virtex ok through the OPB bus. OPB bus base addresses are store in
integer volatile base addr pointers. The integer pointers ties bits 30/31 of the OPB address to 0.
Volatile is required so that the compiler will not cache data written to the OPB bus as it would for
memory. In any state a reset command must be receivable. For this reason 100 consecutive reset
commands (’a’) will always reset the PPC interface even when reading data that should be written
to flash. So the flow control has to make sure no 100 consecutive reset commands can occure in a
data stream. For this reason control bytes (255) must be send in a smaller interval. Those control
bytes then also are used for flow control. The PPC Program permanently waits for incoming RS232

7

data and has a state machine that handles incoming data. Most common commands should be burst
read and burst write that read/write a specified amount of data from/to a flash address to/from the
RS232 interface. Other commands are rather for debugging purpose. Available commands are listed
below in PC program description.

3.3 PC Program

This is a (currently windows) c++ program that can access the flash memory. There are some os
dependant functions in os.cpp. To adept the program to Linux those should be adapted. Then there
is some more Windows specific code in rs232.cpp (like QueryPerformanceCounter) to measure time.
Those need to be changed too or just be thrown away. When started the program initializes the com
port and issues a reset command. Then it awaits commands from the user. The following commands
are available.:

3.3.1 Commit Chip Erase [e]

As one can only write a 0 to Flash RAM but no 1 the Flash must be erased and every byte set to
0xFF before it can be written. This command can erase a single or both FlashRAM chips. To commit
a chip erase the folowing sequence is written to the flash ship (in fact to it’s state machine)

Address Data
0xAAA 0xAA
0x555 0x55
0xAAA 0x80
0xAAA 0xAA
0x555 0x55
0xAAA 0x10

To select between addressing the two flash chips the highest address bit (24 bit address) is set 0
or 1. Those commands are commited by c-function CommitChipErase. The program then calls func-
tion CheckChipErase that waits until the chip erase has completed. There are sequences being able
to delete small sections of the flash chip. Those could be implemented later if needed. But as we only
want to store a single binfile in each flash RAM this is not necessary yet.

3.3.2 Ident Device [n]

Makes the PPC ident itself and print the IDCode address from the OPB bus.

3.3.3 Reset Interface [r]

Will reset the interface by sending reset commands (up to 100) until “Resetting” (ASCII string) is
received. If no such answer is received after 100 tries the PPC program is not working correctly and
the program will terminate. Having reset the PPC successfully the PC will issue a reset command
to the OPB interface and this will then reset the flash access component in the Virtex and the Actel
chip. Finally an ident device command is send to the PPC.

3.3.4 Ping [p]

Ping the PPC and wait for pong to check if connection is alive.

8

3.3.5 Low Level Write [o]

This will call the WriteActel function to write to OPB addresses as described in the flash access
component description.(might be confusing as there are also Actel addresses but this will write to
OPB addresses). In combination with the GEN WRITE ADDR Actel addresses can be written. So for
example to write a PCI read command to the Actel PCI command register there are two possibilities:

• Write 0x04 to 0x07 (COMMAND REG ADDR)

• Write 0x0402 to 0x03 (GEN WRITE ADDR / 0x0402 is splitted into address 02 (REG CMD A)
and data 04 (PCI COMMAND READ)

3.3.6 Low Level Read [k]

Similar to Low Level Write this will read from an OPB address.

3.3.7 Write Single Byte [w]

This will write a single byte to a flash address. Inputa are a 24 bit address and an 8 bit data value.
The WriteRAM C-function is called. It will call the WriteFlash function to issue a write sequence to
the flash:

Address Data
0xAAA 0xAA
0x555 0x55
0xAAA 0xA0
Address Data

(Address and data must of course be replaced by the appropriate values.)
The WriteFlash function itself will use the WriteActel function to fill the Actel PCI registers to
issue a write command. (As Low Level Read/Write). This way it will write the data to 0x05
(DATA WRITE ADDR), the address to 0x06 (ADDRESS REG ADDR) and then 0x02 to 0x07
(COMMAND REG ADDR):

3.3.8 View Single Byte [v]

Will use the ReadFlash C-function to read one byte from a particular flash address and display this.
There is no need to talk with the flash state machine for reading so there are no different C-functions
ReadFlash / ReadRAM but only ReadFlash as compared to WriteFlash/WriteRAM. The function
will then:

• Write the address to OPB address 0x06 (ADDRESS REG ADDR)

• Write 0x04 to OPB address 0x07 (PCI COMMAND READ: so the data is read from flash to
internal register in flash access controller)

• Write 0x00 to OPB address 0x04 (DATA READ ADDR: so data is read from the Actel to
Virtex)

• Read from OPB address 0x04 (DATA READ ADDR: data is read to PPC and send through
RS232)

3.3.9 Upload File [u]

This command will upload a file to the flash RAM. It will not erase the chip before. The program will
ask for the filename and the flash address to write the file to. It then uses the WriteRAMBurst function
to perform a burst write to the flash. The WriteRAMBurst function sends the WriteRAMBurst

9

command, then 32 address bits followed by a 32 bit size. Then the data bits are sent. There must
be control bytes set to 255 in a defined interval (see rs232.h) so that a reset sequence cannot be sent
unintentionally. For flow control reason the PPC will answer every control byte with a “.”. Pressing a
key during transfer will abort the BurstWrite. A simple XOR checksum is calculated during transfer
and compared at the end to check for errors. This could be advanced to a CRC later on.

3.3.10 Download File [d]

Will ask for Filename, Flash Address and Size. Then downloads [Size] bytes from [Flash Address]
and save those to [Filename]. For this it uses the ReadRAMBurst command that resembles the
WriteRAMBurst.

3.3.11 Copy from PPC Address [a]

Because File upload through RS232 console is quite slow (about 4 kb/s at 57600 baud), a second
option is hereby supplied to write data to the flash RAM. With this command, data can copied from
a PPC address to a flash address. So for example you could use XMD to write a file to the onboard
DDR RAM and then use this command to copy from the DDR RAM to flash. (This results in a
higher speed of about 10 kb/s at the moment). The command needs 3 Inputs, PPC address, flash
address and amount of bytes to copy.

3.3.12 Extract Binfile from Bitfile [x]

Bitgen can output bin and bitfiles, where bitfiles are just binfiles supplied with a header. For pro-
gramming binfiles are needed so this option can remove the bitfile header and extract a binfile out of
a bitfile. If given a binfile as input it will just be copied. Other input files should be recognized as
invalid. This command will write the binfile to hard disc and append “.bin” to the filename.

3.3.13 Upload Bin/Bitfile [b]

This will upload a given bit/binfile to either chip 0 or 1. It will perform the following tasks:

• Extract a binfile out of the bitfile if neccessary

• Provide the binfile with a 512 bit header, that contains the filesize and some extra info. (This
filesize in the header is then used by the virtex programmer component of the Actel design to
obtain the number of bytes to send to the virtex.)

• Commit a chip erase on the chip selected

• Use WriteRAMBurst to upload the binfile with header to the selected chip

(Look at rs232.h to see which other values are stored in the header!)

3.3.14 Show Bitfile Information from Flash [i]

Will show the information contained in the binfile headers stored in both flash rams or an “invalid
binfile” error if no header is found.

3.3.15 Download Binfile [l]

Will display the binfile header info and then allow to download one of the binfiles from one flash chip
and store it in a file.

10

3.3.16 Test Sequence [t]

The PPC C-programm contains a TestSequence function that is used for debugging purpose. This
command will call the function and print it’s output.

3.3.17 Change Debug Mode [m]

Changes the amount of debugging info displayed in a range of 0 to 5.

3.3.18 Print Help [h]

Prints a list of available commands.

3.3.19 Quit [q]

Exits C++ program on PC side.

3.3.20 Set Virtex ok disable state to 1 [z]

This will stop the virtex ok entity in the Virtex from sending the virtex ok clock to the Actel. The
Actel (when in observation mode) should then start reprogramming the Virtex.

11

